Польза и вред резонанса физика
В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.
С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.
Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.
Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.
Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.
Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.
Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.
Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.
В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост “затанцевал”, по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.
Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.
Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы
Матвеева Е.В., учитель физики
ГБОУ Школа № 2095 «Покровский квартал»
Почему солдатам, обычно марширующим строевым шагом при пересечении моста дается команда идти «вольно»? Потому, что маршируя по мосту, они могут его обрушить. Происходит это вследствие интересного физического явления – резонанса. Впрочем, явление резонанса активно употребляется не только в физике. К примеру, термин «общественный резонанс» означает реакцию большого количества людей на какое-то событие, будь-то политическое, экономическое, социальное. Но в нашей статье мы поговорим именно о физическом резонансе, его значении в физике, причинах и наиболее ярких примерах из жизни.
Определение резонанса
Первым, кто дал определение того, что такое резонанс был великий итальянский ученый Галилео Галлией, активно занимающийся не только астрономическими наблюдениями, но и работой с маятником, теорией струн и многими другими вещами в физике.
Итак, в переводе с латыни слово «резонанс» буквально означает «откликаюсь», и означает физическое явление, при котором собственные колебательные движения, становясь вынужденными, многократно увеличивают свою амплитуду, отвечая на воздействия внешней среды.
Или если по-простому, то резонанс это отклик на некий раздражитель извне, это синхронизация частот колебаний (количества колебаний в секунду) определенного тела (или целой системы) с внешней силой, которая воздействует на него. Вследствие физического резонанса всегда происходит увеличение амплитуды колебаний тела или системы.
Представьте себе детские качели, чтобы раскатать их сильнее, вам необходимо прикладывать силу таким образом, чтобы ее колебания совпадали с колебаниями самой качели. Как результат таких действий качели будут раскачиваться все сильнее и сильнее, или говоря по-научному – амплитуда их колебаний будет увеличиваться. Детские качели, пожалуй, самый простой и яркий пример резонанса из нашей жизни.
Впрочем, есть у резонанса и свой антипод – диссонанс. Диссонанс (с латыни переводится как «разногласящий») – прямо противоположное явление, означающее несовпадение, несоответствие. Если к тем же раскаченным качелям начать прикладывать силу хаотически, то есть хаотически их дергать туда-сюда, то вскоре они остановятся, амплитуда их движения снизится до нуля. Или еще один наглядный пример: если вы жарким летним днем выйдете на улицу в шубе, это тоже будет диссонанс, так как ваша одежда будет совершенно не соответствовать погоде.
Резонанс и добротность
Резонанс в физике часто связан с добротностью. Что это такое? Под добротностью понимается степень отзывчивости колебательной системы, уровень интенсивности ее отклика. На все том же примере с качелями можно представить, что есть две качели, одни из них старые и ржавые, а вторые новые, недавно построенные. Чтобы раскачать старые и ржавые качели нужно приложить намного больше усилий, нежели новые, то есть добротность у старых качелей (яко колебательной системы) будет в разы ниже, чем у качелей новых.
Логично, что разные показатели добротности приводят к разным последствиям:
- При низкой степени добротности колебательная система не будет сохранять долгое время вынужденные колебания, и очень скоро возвратится к естественным колебаниям.
- В определенных ситуациях высокая добротность может быть опасной, так как сильный резонанс и многократное увеличение амплитуды колебаний приведет к разрушению физического тела.
Виды и примеры резонанса
Только в самой физике различают такие виды резонанса как:
- Механический резонанс – это все те же вышеупомянутые качели, резонанс моста от проходящей роты солдат, резонанс колокольного звона и т. д. Одним словом, резонанс, вызванный механическими воздействиями.
- Акустический резонанс – это резонанс, благодаря которому работают все струнные музыкальные инструменты: гитара, скрипка, лютня, балалайка, банджо и т. д. К слову корпус музыкальных инструментов неспроста имеет свою форму. Звук, издаваемый струной при щипке, попадает внутрь корпуса и там вступает в резонанс со стенками, что в результате приводит к его усилению. По этой причине качество звучания той же гитары сильно зависит от того материала, из которого она сделана и даже от лака которым она покрыта.
- Электрический резонанс – представляет собой совпадение частоты колебаний внешнего напряжения с частотой колебаний электрической цепи, по которой идет ток.
Помимо этих чисто физических резонансов есть еще уже упомянутый нами общественный резонанс – яркий отклик общества на какое-то событие (обычно политическое или экономическое), например брекзит Британии, ее выход из Европейского союза вызвал широкий общественный резонанс во многих странах Европы и особенно, разумеется, в самой Британии.
Есть также и когнитивный резонанс – это полное совпадение во взглядах и мнениях. Например, вы познакомились с новым человеком, а он думает так же как вы, у вас абсолютно схожие взгляды, вкусы, предпочтения, тогда имеет место когнитивный резонанс. И противоположное явление – когнитивный диссонанс, когда вы абсолютно не согласны с кем-то или чем-то, абсолютно не принимаете происходящего. (Например, автор этой статьи, оказавшись в каком-нибудь украинском бюрократическом учреждении, будь-то Жеке, БТИ или налоговой испытывает настоящий когнитивный диссонанс)).
Опасность и польза резонанса
Резонанс, как и любое другое физическое явление, сам по себе не является ни плохим, ни хорошим, так как может приносить как пользу, так и вред. Например, именно резонанс помогает вытащить автомобиль, застрявший в грязи или снегу – планомерное раскачивание авто, то взад, то вперед с увеличением амплитуды колебаний помогает освободить его из плена.
А вот хрестоматийный негативный пример действия резонанса описан в самом начале нашей статьи, и связан с мостами. Если рота солдат строевым шагом пройдет по мосту, то может если и не обрушить его, то значительно повредить, потому, что вызовет сильный резонанс собственных колебаний поверхности моста с колебаниями от марша «нога в ногу» сотен солдат.
Впрочем, сильный резонанс моста может случиться и не только от марширующей роты солдат, конструкторам и архитекторам давно известно такое понятие как «Такомский мост» – это мост построенный с сильными нарушениями строительных норм. Дело в том, что в 40-х годах еще XIX века в США произошло обрушение висячего моста. Причиной обрушения был резонанс. Но рота солдат по мосту не маршировала, виновником на этот раз был ветер – колебания ветра вступили в резонанс с собственными колебаниями конструкции моста и в результате вызвали его обрушение.
С тех пор технологии строительства мостов претерпели значительные изменения, а инженеры, конструкторы и архитекторы при проектировании своих объектов обязательно принимают в расчет явление резонанса. Этот феномен необходимо учитывать не только при строительстве мостов, но и при возведении высотных зданий, антенн, высоких опор, словом всего того, что теоретически может войти в резонанс с воздушными потоками.
Резонанс, видео
И в завершение образовательное видео по теме нашей статьи.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Галилео Галилей на примере простого маятника объяснил такое явление, как механический резонанс. Он доказал, что, если извне действовать колебаниями на тело, уже совершающее вынужденные колебания, то, изменяя частоту воздействия, можно увеличить или уменьшить его амплитуду движений.
Колебания простейшего маятника
Колебания и частота
Процедура, связанная с изменением положения системы рядом с точкой равновесного состояния и повторяющаяся с течением времени, называется колебаниями. Качающийся маятник повторяет свои движения относительно нормали к горизонтальной плоскости. При этом, если не прикладывать к его движению дополнительной энергии, его раскачивания затухнут.
Явление таких изменений можно классифицировать по следующим параметрам:
- по математической модели, используемой в колебаниях;
- по структуре периодичности;
- по природе физических свойств;
- по виду взаимодействия с окружающими условиями.
Внимание! Все колебания, независимо от своих физических свойств, имеют общие законы, которые можно описать волновыми явлениями. Эти закономерности исследует теория волновых колебаний.
Механические колебания связаны с трансформацией одной формы энергии в другую, волновые – с пространственным передвижением и распространением энергии.
Общими параметрами для всех колебаний являются:
- частота;
- период;
- амплитуда.
Частотой считают количество колебаний, совершаемых телом за единицу времени. Единица измерения – герц (Гц), графическое обозначение – f, ʋ. Частота может быть круговой – при периодичном движении точки по окружности, ещё её называют циклической:
ω = 2π*T, (рад/с).
Период (T) являет собой время целого (полного) колебания, во время которого можно зафиксировать повторение любой из характеристик состояния системы. Это значит, что она совершила полное колебание. Обозначение периода – Т, единица измерения – секунда (с).
Две величины T и f являются обратными, что следует из формул:
- T = 1/f;
- f = 1/T.
Наибольшее отклонение точки тела или любой величины системы от равновесного положения называется амплитудой колебаний и обозначается буквой A. Единицей измерения являются те величины, изменения которых рассматриваются. При механических отклонениях амплитуду измеряют в метрах (м), амплитуду переменного напряжения – в вольтах (В) и так далее.
Период и частота механических колебаний
Суть явления резонанса
Слово resono в переводе с латыни значит отклик. Колеблющаяся система откликается на наружные колебательные влияния. При приближении частоты наружной к частоте своей собственной она отвечает резким повышением амплитуды своих вынужденных периодических отклонений от состояния равновесия.
Явление резонанса
Важно! Резонанс и унисон – это не одинаковые явления. Унисон – это совпадение звуков по тону. В этом случае не происходит увеличения амплитуды звуковых колебаний, а наступает «одноголосье» двух или нескольких источников звука.
Две струны могут звучать в унисон, если к ним одновременно прикладывать силу, приводящую к их колебаниям. Но одна может резонировать с другой в момент совпадения частот их колебаний и увеличивать громкость своего звучания.
Польза и вред механических резонансов
При строительстве заданий и инженерных сооружений обязательное условие – проверка конструкций на резонансные явления. При этом изучаются все источники колебаний, как природных (ветра, прибоя), так и искусственных (радары, передающие антенны).
Одним из примеров вреда резонанса можно назвать разрушение в 1940 году висячего моста в штате Вашингтон, США. Низкая высота опор Такомского сооружения вызывала непроизвольные колебания при воздействии ветра. В результате того, что эти колебания однажды вступили в резонанс с порывами движения воздушных масс, мост разрушился. Хотя ещё в ходе строительства было отмечено появление этого явления, но ему не придали значения.
Явление усиления амплитуды при совпадении частот при землетрясении вызывает разрушения и огромные волны цунами.
У резонанса есть плюсы:
- резонаторы на струнных инструментах усиливают гармонику, выполняя усиления стоячих волн;
- колебательный контур радиоприёмных устройств, при настройке на передающую станцию, усиливает принятый сигнал по амплитуде;
- разрушающие особенности этого процесса для бетона используются при работе перфоратора, во время вибрации при сверлении.
Интересно. Благодаря рассматриваемому явлению, современная медицина приобрела такой незаменимый прибор, как МРТ – магниторезонансная томография. При помощи МРТ производят полное обследование организма человека. Магниторезонансная терапия позволяет лечить болезни опорно-двигательного аппарата без хирургического вмешательства.
Цунами – результат резонанса частоты морских волн с частотой подземных толчков
Добротность колебательной системы
Ещё одной из характеристик колебательной системы (КС) является добротность. Она обозначается буквой Q и находится по общей формуле:
Q = ω0*W/Pd = 2πf0W/Pd ,
где:
- ω0 – круговая резонансная частота;
- f0 – частота резонанса;
- W – запас энергии в КС;
- Pd – мощность рассеивания.
Добротность определяет отношение запаса энергии в КС к потерям за интервал фазных изменений на величину в 1 радиан. Она показывает ширину резонансной полосы.
Внимание! Формула для вычисления Q говорит о том, что в каждом периоде скорость затухания колебаний и количество потерянной энергии тем меньше, чем выше значение добротности КС.
Добротность колебательной системы
Положительные и отрицательные стороны резонанса
Высотные мачты и башни, небоскрёбы, мосты и смотровые площадки должны выдерживать возрастание амплитуды своих колебаний в результате внешних воздействий.
У явления резонанса есть плюсы:
- резонаторы на струнных инструментах усиливают гармонику, выполняя усиление стоячих волн;
- колебательный контур радиоприёмных устройств, при настройке на передающую станцию, усиливает принятый сигнал по амплитуде.
Разрушающие свойства этого явления используются при работе перфоратора – во время вибрации при сверлении бетонная стена вступает в резонанс с рабочим инструментом, и происходит разрушение бетона в точке применения.
Плюсы и минусы резонанса
Частота резонанса
Частоту силы, вынуждающей КС вступить с ней в резонанс, можно определить, исходя из формулы:
ωрез = √(ω02 – 2ß2).
В данной формуле:
- ωрез – частота резонанса;
- ω0 – круговая частота;
- ß – коэффициент затухания.
Когда коэффициент затухания повышается, то явление резонирования снижается.
Электромеханические резонаторы
Явление механического резонанса – это повышение амплитуды вынужденных колебательных перемещений. Электромеханический резонатор – это устройство, предназначенное для измерения сил механической природы и её производных. По техническому замыслу он подобен пьезоэлектрическому датчику, но с более высокой добротностью. Основными элементами такого устройства являются:
- пьезоэлектрическая пластина, имеющая форму спаренного камертона (параллельные одинаковые стержни с объединёнными между собой концами);
- электроды, присоединённые к концам пьезоэлектрического компонента.
Для понижения частоты служит сосредоточенная масса, которая с помощью перемычки подсоединяется к средним частям стержней.
Устройство электромеханического резонатора
На приведённой картинке отображены следующие зоны и элементы:
- 1 – стержни (сечение равномерно по всему стержню);
- 2 – объединённые элементы;
- 3 – зона размещения электродов;
- 4 – массы сосредоточения;
- 5 – перемычки;
- 6 – места для закрепления резонатора и подключения цепи для силоизмерения.
К сведению. Электромеханические резонаторы – это детали или устройства, объединяющие в себе свойства механического резонирования и пьезоэлектрических преобразований.
Достижение размытия резонанса
Для частичного уменьшения или размытия (смягчения) резонанса необходимо выполнить одно из условий снижения амплитуды. Эффект амортизации заключается в том, чтобы:
- понизить добротность КС;
- убрать совпадение или пересечение диапазонов частот КС и частот колебаний возможных сторонних возмущений.
Существует множество приспособлений и конструктивных решений, позволяющих это сделать. К наиболее удачным относятся:
- вставка в многопроволочные провода линий электропередач жилы с меньшим сечением;
- применение амортизаторов на транспорте для снижения колебаний во время движения;
- применение в трубопроводах, работающих под высоким давлением, вставок-гасителей;
- запрет при передвижении по мостам колонной шагать в ногу;
- для предотвращения раскачивания зданий и вхождения их в ветровой резонанс устанавливание «воздуходувок», выполняющих встречную ветру подачу воздуха;
- подача импульсов тока на нежёсткую деталь во время её токарной обработки.
Один из универсальных методов, предназначенных для размытия резонанса, предлагает использовать два связанных элемента. У элементов изменения жесткости происходят по двум разным законам: линейному и нелинейному. Вместе соединяются витая пружина и прессованная проволока, представляющая собой демпфирующий компонент упругого действия.
Кварцевые резонаторы и электромеханические фильтры
Это наиболее распространённые резонаторы, включающие в себя кристаллы кварца. Кристалл вырезается в форме параллелепипеда. На полученную пластину в вакууме напыляют электроды. Способы колебаний такого элемента зависят от следующих позиций:
- вида пластины из кварца;
- конструктивного исполнения электродов;
- метода присоединения электродов.
На величину собственной частоты кварцевого резонатора влияют: форма, размеры, модуль упругости и плотность пьезоэлектрического элемента, а также особенности крепления детали.
Простейшая конструкция кварцевого резонатора
Электромеханические фильтры (ЭМФ) выполняют ступенчатое преобразование. На первой ступени происходит превращение электрических пульсаций в колебания механической природы. Вторая ступень их фильтрует, третья – снова возвращает в электрическую форму.
Внимание! Вторая ступень – это механический резонатор, он работает как фильтр. Изготавливается из ферритов с магнитострикционными свойствами, кварца, сплавов железа с никелем, пьезокерамических элементов и иных компонентов.
Блок-схема ЭМФ
Примеры резонанса
Ещё один из примеров проявления – акустическое резонирование соборных труб при звучании органной музыки. Громкое и красивое звучание происходит в результате этого явления. Трубы применяются различных диаметров и длины. Такой инструмент, как флейта, звучит исключительно при помощи этого эффекта. Детские качели достигают наибольшей амплитуды раскачивания при резонансе колебаний внешних и собственных.
Применение нано технологий открыло такое явление, как плазменный резонанс, при котором поверхностный плазмон возбуждается извне электромагнитной волной. Независимо от того, к каким последствиям приводит резонирование разных колебательных систем, его величину можно регулировать. Акустические, электрические, механические и другие резонаторы, входящие в состав устройств, расширяют спектр их применения.