Приведите несколько доводов в пользу единства
Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шванна и М. Шлейдена (1839).
Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Единство органического мира. Особенности растительного организма, их связь с типом обмена веществ
Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910—1916), Дж. Уотсону и Ф. Крику (1953).
Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки — от особи к особи и перераспределения ее в пределах биологического вида.
Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток.
Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК).
На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление — геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов.
На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.
Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки), закономерностей хранения, передачи и использования клетками наследственной информации.
Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.
Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии.
То, что живое на планете представляет собой единое целое в историческом плане, обосновывается теорией эволюции. Основы названной теории заложены Ч. Дарвином (1858). Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию.
Эволюционная теория объясняет единство мира живых существ общностью их происхождения. Она называет пути, способы и механизмы, которые за несколько миллиардов лет привели к наблюдаемому ныне разнообразию живых форм, в одинаковой мере приспособленных к среде обитания, но различающихся по уровню морфофизиологической организации.
Общий вывод, к которому приходит теория эволюции, состоит в утверждении, что живые формы связаны друг с другом генетическим родством, степень которого для представителей разных групп различается.
Свое конкретное выражение — это родство находит в преемственности в ряду поколений фундаментальных молекулярных, клеточных и системных механизмов развития и жизнеобеспечения.
В основе специфических свойств каждой клетки, каждого организма, которые передаются по наследству, лежит специфика обмена веществ. Обмен веществ — это совокупность всех происходящих в организме химических процессов.
Химические реакции, составляющие обмен веществ, тесно взаимосвязаны и согласованы друг с другом. Обмен веществ внутри клетки тесно взаимосвязан со средой. Из внешней среды поступают вещества, необходимые для жизнедеятельности организма, и определенные вещества выделяются организмом в среду.
Условия среды (температура, влажность, освещение), в которых обитает организм, оказывают огромное влияние на скорость и направленность обмена. Организм обладает способностью регулировать обмен веществ. Даже поверхностное рассмотрение особенностей химических процессов в живой клетке позволяет заметить, что они протекают с огромной скоростью.
И все они являются каталитическими и осуществляются благодаря присутствию биологических катализаторов-ферментов, ничтожное количество которых осуществляет колоссальный объем превращений.
Особенностями ферментов по сравнению с небиологическими катализаторами является высокая эффективность действия, специфичность и способность функционировать при «мягких» условиях значений рН и температуры.
Источник: https://vseobiology.ru/fiziologiya-rastenij/1629-03-edinstvo-organicheskogo-mira-osobennosti-rastitelnogo-organizma-ikh-svyaz-s-tipom-obmena-veshchestv
Источник
Alexey Khoroshev
Высший разум
(1625275)
9 лет назад
Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шваннаи М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910—1916), Дж. Уотсону и Ф. Крику (1953). Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки — от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в. , наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК) . На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление — геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов. На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.
Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки) , закономерностей хранения, передачи и использования клетками наследственной информации. Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.
Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии. То, что живое на планете представляет собой единое целое в историческом плане, обосновывается теорией эволюции. Основы названной теории заложены Ч. Дарвином (1858). Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию.
Эволюционная теория объясняет единство мира живых существ общностью их происхождения. Она называет пути, способы и механизмы, которые за несколько миллиардов лет привели к наблюдаемому ныне разнообразию живых форм, в одинаковой мере приспособленных к среде обитания, но различающихся по уровню морфофизиологической организации. Общий вывод, к которому приходит теория эволюции, состоит в утверждении, что живые формы связаны друг с другом генетическим родством, степень которого для представителей разных групп различается. Свое конкретное выражение это родство находит в преемственности в ряду поколений фундаментальных молекулярных, клеточных и системных механизмов развития и жизнеобеспечения.
Источник
Alexey Khoroshev
Высший разум
(1625266)
9 лет назад
Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шваннаи М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910—1916), Дж. Уотсону и Ф. Крику (1953). Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки — от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в. , наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК) . На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление — геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов. На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.
Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки) , закономерностей хранения, передачи и использования клетками наследственной информации. Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.
Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии. То, что живое на планете представляет собой единое целое в историческом плане, обосновывается теорией эволюции. Основы названной теории заложены Ч. Дарвином (1858). Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию.
Эволюционная теория объясняет единство мира живых существ общностью их происхождения. Она называет пути, способы и механизмы, которые за несколько миллиардов лет привели к наблюдаемому ныне разнообразию живых форм, в одинаковой мере приспособленных к среде обитания, но различающихся по уровню морфофизиологической организации. Общий вывод, к которому приходит теория эволюции, состоит в утверждении, что живые формы связаны друг с другом генетическим родством, степень которого для представителей разных групп различается. Свое конкретное выражение это родство находит в преемственности в ряду поколений фундаментальных молекулярных, клеточных и системных механизмов развития и жизнеобеспечения.
Источник
Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шванна и М. Шлейдена (1839).
Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Единство органического мира. Особенности растительного организма, их связь с типом обмена веществ
Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910—1916), Дж. Уотсону и Ф. Крику (1953).
Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки — от особи к особи и перераспределения ее в пределах биологического вида.
Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток.
Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК).
На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление — геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов.
На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности.
Молекулярная биология уделяет главное внимание изучению в процессах жизнедеятельности роли биологических макромолекул (нуклеиновые кислоты, белки), закономерностей хранения, передачи и использования клетками наследственной информации.
Молекулярно-биологические исследования раскрыли универсальные физико-химические механизмы, от которых зависят такие всеобщие свойства живого, как наследственность, изменчивость, специфичность биологических структур и функций, воспроизведение в ряду поколений клеток и организмов определенного строения.
Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии свидетельствуют в пользу единства органического мира в его современном состоянии.
То, что живое на планете представляет собой единое целое в историческом плане, обосновывается теорией эволюции. Основы названной теории заложены Ч. Дарвином (1858). Свое дальнейшее развитие, связанное с достижениями генетики и популяционной биологии, она получила в трудах А. Н. Северцова, Н. И. Вавилова, Р. Фишера, С. С. Четверикова, Ф. Р. Добжанского, Н. В. Тимофеева-Ресовского, С. Райта, И. И. Шмальгаузена, чья плодотворная научная деятельность относится к XX столетию.
Эволюционная теория объясняет единство мира живых существ общностью их происхождения. Она называет пути, способы и механизмы, которые за несколько миллиардов лет привели к наблюдаемому ныне разнообразию живых форм, в одинаковой мере приспособленных к среде обитания, но различающихся по уровню морфофизиологической организации.
Общий вывод, к которому приходит теория эволюции, состоит в утверждении, что живые формы связаны друг с другом генетическим родством, степень которого для представителей разных групп различается.
Свое конкретное выражение — это родство находит в преемственности в ряду поколений фундаментальных молекулярных, клеточных и системных механизмов развития и жизнеобеспечения.
В основе специфических свойств каждой клетки, каждого организма, которые передаются по наследству, лежит специфика обмена веществ. Обмен веществ — это совокупность всех происходящих в организме химических процессов.
Химические реакции, составляющие обмен веществ, тесно взаимосвязаны и согласованы друг с другом. Обмен веществ внутри клетки тесно взаимосвязан со средой. Из внешней среды поступают вещества, необходимые для жизнедеятельности организма, и определенные вещества выделяются организмом в среду.
Условия среды (температура, влажность, освещение), в которых обитает организм, оказывают огромное влияние на скорость и направленность обмена. Организм обладает способностью регулировать обмен веществ. Даже поверхностное рассмотрение особенностей химических процессов в живой клетке позволяет заметить, что они протекают с огромной скоростью.
И все они являются каталитическими и осуществляются благодаря присутствию биологических катализаторов-ферментов, ничтожное количество которых осуществляет колоссальный объем превращений.
Особенностями ферментов по сравнению с небиологическими катализаторами является высокая эффективность действия, специфичность и способность функционировать при «мягких» условиях значений рН и температуры.
Источник: https://vseobiology.ru/fiziologiya-rastenij/1629-03-edinstvo-organicheskogo-mira-osobennosti-rastitelnogo-organizma-ikh-svyaz-s-tipom-obmena-veshchestv
Источник