В пользу гипотезы симбиотического происхождения митохондрий от аэробных
Вступление
Со времени обнаружения в митохондриях молекул ДНК прошло четверть ве-ка, прежде чем ими заинтересовались не только молекулярные биологи и цито-логи, но и генетики, эволюционисты, а также палеонтологи и криминалисты. Такой широкий интерес спровоцировала работа А.Уилсона из Калифорнийско-го университета. В 1987 г. он опубликовал результаты сравнительного анализа ДНК митохондрий, взятых у 147 представителей разных этносов всех человече-ских рас, заселяющих пять континентов. По типу, местоположению и количес-тву индивидуальных мутаций установили, что все митохондриальные ДНК воз-никли из одной предковой последовательности нуклеотидов путем диверген-ции. В околонаучной прессе вывод этот интерпретировали крайне упрощенно — все человечество произошло от одной женщины, названной митохондриаль-ной Евой (т.к. и дочери и сыновья получают митохондрии только от матери), которая жила в Северо-Восточной Африке около 200 тыс. лет назад. Еще через 10 лет удалось расшифровать фрагмент ДНК митохондрий, выделенный из ос-танков неандертальца, и оценить время существования последнего общего предка человека и неандертальца в 500 тыс. лет назад.
Сегодня митохондриальная генетика человека интенсивно развивается как в популяционном, так и в медицинском аспекте. Установлена связь между рядом тяжелых наследственных заболеваний и дефектами в митохондриальных ДНК. Генетические изменения, ассоциированные со старением организма, наиболее выражены в митохондриях. Что же представляет из себя геном митохондрий, отличающийся у человека и других животных от такового у растений, грибов и простейших и по размеру, и по форме, и по генетической емкости? Какова роль, как работает и как возник митохондриальный геном у разных таксонов в целом и у человека в частности? Об этом и пойдет речь в моем “маленьком и самом скромном” реферате.
У всех эвкариот — будь это малярийный плазмодий, мельчайший одноклето-чный паразит, разрушающий эритроциты человека, или сам человек, гигантская свободноживущая клетка амеба протей, микроскопическая колония дрожжей или гриб, имеющий многокилометровый мицелий, эфемерные насекомые поде-нки или тысячелетние секвойи — у всех генетическая информация содержится не только в хромосомах клеточного ядра, но и в митохондриях — само-воспроизводящихся полуавтономных органеллах клетки, имеющих собствен-ный геном. В то время как ядерный геном представляет собой совокупность линейных молекул ДНК гаплоидного набора хромосом, митохондриальный ге-ном — одну или несколько кольцевых(редко линейных)молекул ДНК (мтДНК). В исключительных случаях эвкариотические клетки не содержат митохондрий, например некоторые паразитирующие в кишечнике анаэробные амебы.
В матриксе митохондрий, кроме ДНК, находятся и собственные рибосомы, по многим характеристикам отличающиеся от эвкариотических рибосом, рас-положенных на мембранах эндоплазматической сети. Однако на рибосомах ми-тохондрий образуется не более 5% от всех белков, входящих в их состав. Бóль-шая часть белков, составляющих структурные и функциональные компоненты митохондрий, кодируется ядерным геномом, синтезируется на рибосомах эндо-плазматической сети и транспортируется по ее каналам к месту сборки. Таким образом, митохондрии — это результат объединенных усилий двух геномов и двух аппаратов транскрипции и трансляции. Некоторые субъединичные ферме-нты дыхательной цепи митохондрий состоят из разных полипептидов, часть ко-торых кодируется ядерным, а часть — митохондриальным геномом. Например, ключевой фермент окислительного фосфорилирования — цитохром-с-оксидаза у дрожжей состоит из трех субъединиц, кодируемых и синтезируемых в мито-хондриях, и четырех, кодируемых в ядре клетки и синтезируемых в цитоплазме. Экспрессией большинства генов митохондрий управляют определенные гены ядер.
Симбиотическая теория происхождения митохондрий
Гипотезу о происхождении митохондрий и растительных пластид из вну-триклеточных бактерий-эндосимбионтов высказал Р.Альтман еще в 1890 г. За век бурного развития биохимии, цитологии, генетики и появившейся полвека назад молекулярной биологии гипотеза переросла в теорию, основанную на бо-льшом фактическом материале. Суть ее такова: с появлением фотосинтезирую-щих бактерий в атмосфере Земли накапливался кислород — побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных ге-теротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с бóльшим КПД, чем анаэробные бактерии, расщеплять органические ве-щества, образующиеся в результате фотосинтеза. Часть свободно живущих аэ-робов была захвачена анаэробами, но не “переварена”, а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к ды-ханию клетки. Они скорее “существа”, еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие уси-лия, не подвергаясь риску быть съеденными.
В пользу симбиотической теории говорят многочисленные факты:
— совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК, не связанные с гистонами (в отличие от линейных ядерных ДНК);
— по нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;
— митохондриальные РНК-полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эвкариотические РНК-полимеразы нечувствительны к этому антибиотику;
— белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эвкариот;
— липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;
— кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;
— до сих пор сохранились организмы, имитирующие промежуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).
Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных гено-мов простейших, грибов, растений и высших животных. Но во всех случаях ос-новная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой. Новый геном может создавать метаболические пути, приводящие к образова-нию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть — в эндоплазматической сети. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липидов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрип-ции и трансляции мтДНК, контролируя тем самым рост и размножение мито-хондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много мито-хондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.
Читайте также:
Рекомендуемые страницы:
©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-29
Нарушение авторских прав и Нарушение персональных данных
Поиск по сайту:
Источник
Теория симбиогенеза (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и пластид.
История cимбиогенеза
Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина и О. В. Баранецкого о двойственной природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
Симбиотическое происхождение митохондрий и пластид
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии — это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в своё время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Доказательства симбиогенеза
Митохондрии и пластиды:
- имеют две полностью замкнутые мембраны. При этом внешняя сходна с мембранами вакуолей, внутренняя — бактерий.
- размножаются бинарным делением (причём делятся иногда независимо от деления клетки), никогда не синтезируются de novo.
- генетический материал — кольцевая ДНК, не связанная с гистонами (По доле ГЦ ДНК митохондрий и пластид ближе к ДНК бактерий, чем к ядерной ДНК эукариот)
имеют свой аппарат синтеза белка — рибосомы и др. - рибосомы прокариотического типа — c константой седиментации 70S. По строению 16s рРНК близки к бактериальной.
- некоторые белки этих органелл похожи по своей первичной структуре на аналогичные белки бактерий и не похожи на соответствующие белки цитоплазмы.
Проблемы симбиогенеза
- ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.
- В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.
- Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.
Примеры эндосимбиозов
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.
- Mixotricha paradoxa — наиболее интересный с этой точки зрения организм. Для движения она использует более 250 000 бактерий Treponema spirochetes, прикреплённых к поверхности её клетки. Митохондрии у этого организма вторично потеряны, но внутри его клетки есть сферические аэробные бактерии, заменяющие эти органеллы.
- Амёбы рода Pelomyxa также не содержат митохондрий и образуют симбиоз с бактериями.
- Инфузории рода Paramecium постоянно содержат внутри клеток водоросли, в частности, Paramecium bursaria образует эндосимбиоз с зелёными водорослями рода хлорелла (Chlorella).
- Одноклеточная жгутиковая водоросль Cyanophora paradoxa содержит цианеллы — органоиды, напоминающие типичные хлоропласты красных водорослей, но отличающиеся от них наличием тонкой клеточной стенки, содержащей пептидогликан (размер генома цианелл такой же, как у типичных хлоропластов, и во много раз меньше, чем у цианобактерий).
Гипотезы эндосимбиотического происхождения других органелл
Эндосимбиоз — наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Клеточное ядро, нуклеоцитоплазма
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов.
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза. В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра.
Жгутики и реснички
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.
Пероксисомы
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами.
Источник
На основании сходства бактерий с митохондриями и хлоропластами эукариотических клеток можно предположить, что митохондрии и хлоропласты произошли от бактерий, которые нашли себе «убежище» в более крупных гетеротрофных клетках эукариот. Бактерии имели возможность использовать молекулярный кислород для окисления питательных веществ и использовать энергию света. Более крупные клетки ? хозяева использовали эти полезные свойства и имели с такими помощниками явное преимущество перед своими современниками. Все ныне живущие эукариоты, за малым исключением, содержат митохондрии, а все автотрофные эукариоты содержат также хлоропласты. По-видимому, они были приобретены в результате независимых случаев симбиоза. Более крупные клетки эукариот защищали свои симбиотические органеллы от неблагоприятных воздействий.
Этиопласты образуются у растений, выращиваемых в темноте, они имеются, например, у проростков, расположенных в почве, до их выхода на дневную поверхность.
Этиопласты занимают промежуточное положение между пропластидами и настоящими хлоропластами. Для них характерно хорошо развитое проламеллярное тело с кристаллической структурой. На свету этиопласты тут же превращаются в зрелые хлоропласты.
Хромопласты — это пигментированные окрашенные пластиды, но в отличие от хлоропластов, они не содержат хлорофиллов, а синтезируют и накапливают каротиноиды. Каротиноиды придают этим пластидам желтую, оранжевую и красную окраску.
При этом каротиноиды синтезируются не на поверхности внутренних мембран, а в строме хромопластов. Как правило, каротиноиды растворены в жирных маслах пластоглобул. Внутренняя мембранная система у хромопластов либо не развита, либо деградировала.
Форма хромопластов весьма разнообразна. Они придают яркую окраску лепесткам цветов, зрелым плодам. Это имеет явное приспособительное значение.
Хромопласты обычно возникают из хлоропластов, реже из лейкопластов. По целому ряду признаков их можно назвать стареющими пластидами. Старение хлоропластов происходит, например, при созревании фруктов. Массовое старение хлоропластов наблюдается при пожелтении листьев осенью.
Митохондрии
Как и хлоропласты, митохондрии окружены двумя элементарными мембранами, каждая толщиной 5 — 6 нм. Внутренняя мембрана образует множество складок и выступов, называемых кристами. Кристы значительно увеличивают внутреннюю поверхность митохондрии. Внутреннее содержимое митохондрий называется матриксом.
Митохондрии обычно мельче, чем пластиды, имеют около половины (0,5 мкм) в диаметре и очень разнообразны по форме и величине. Они могут быть округлыми, вытянутыми, гантелевидными, неправильной формы.
В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии. Энергия идет на восстановление АТФ (АДФ — АТФ). АТФ ? основной резерв энергии всех эукариотических клеток.
Поскольку в митохондриях накапливается энергия, их называют энергетическими станциями клетки.
Большинство растительных клеток содержит сотни и тысячи митохондрий, хотя их количество заметно варьирует и определяется потребностью клетки в АТФ.
С помощью прерывистой съемки можно увидеть, что митохондрии находятся в постоянном движении. Они поворачиваются, изгибаются, перемещаются из одной части клетки в другую, а, кроме того, сливаются друг с другом и делятся простым делением.
Митохондрии обычно собираются и накапливаются там, где нужна энергия.
Митохондрии, подобно пластидам, являются полуавтономными органеллами. Они содержат компоненты, необходимые для синтеза собственных белков.
Рибосомы
Основной функцией рибосом является трансляция, то есть синтез белков. На фотографиях, полученных с помощью электронного микроскопа, они выглядят округлыми тельцами диаметром 20 — 30 нм.
Рибосомы содержат примерно равные количества РНК и белка.
Каждая рибосома состоит из 2-х субъединиц неравных размеров, формы и строения. Субъединицы рибосом обозначают по величине коэффициентов седиментации (то есть осаждения при центрифугировании).
В цитоплазме локализованы 80 S рибосомы, состоящие из 40 S и 60 S субъединиц.
В хлоропластах содержатся 70 S рибосомы, в митохондриях 80 S, но отличающиеся от цитоплазматических.
По-видимому, малая субъединица располагается поверх большой так, что между частицами сохраняется пространство («туннель»). Туннель используется для размещения м — РНК во время белкового синтеза.
Полисомы
Во время синтеза белка одну молекулу м — РНК могут транспортировать несколько рибосом. Рибосомы, связанные с одной молекулой м — РНК, образуют полирибосому или полисому.
Полисомы могут находиться в свободном состоянии в цитоплазме, либо могут быть связаны с мембранами эндоплазматической сети, или с наружной мембраной ядерной оболочки. Размер полисом определяется длиной молекул м — РНК.
Лизосомы
Лизосомы были открыты в клетках печени животных и затем обнаружены у растений.
Эти органоиды диаметром около 1 мкм ограничены одинарной мембраной и содержат набор гидролитических ферментов.
Мембрана лизосом полностью предотвращает выход ферментов из органоидов. Мембраны способствуют также поддержанию оптимальных условий для действия ферментов в лизосоме ? формируют кислую среду.
Лизосомы формируются в специализированных участках гладкого эндоплазматического ретикулума.
Лизосомы осуществляют:
- деградацию (разрушение) участков цитоплазмы собственной клетки
- гидролиз запасных веществ.
В растительных клетках определение лизосом затруднено, поскольку лизосомные функции выполняет вакуолярная система. Многие исследователи склонны даже не различать эти органоиды и считают, что специализированные вакуоли по переваривающей активности сравнимы с лизосомами животных.
Микротела
Микротела у растений были выявлены совсем недавно в 1958 г с помощью электронного микроскопа. Это тельца округлой формы 0,2 — 1,5 мкм в поперечнике, ограниченные элементарной мембраной.
В некоторых микротелах обнаруживается белковый кристаллоид, представляющий собой гексагонально расположенные трубочки диаметром около 6 нм.
Число микротел в различных клетках неодинаково, но чаще чуть меньше или равно количеству митохондрий. Предполагается, что микротела являются производными эндоплазматического ретикулума.
В клетках растений выявлены 2 основных типа микротел с идентичной структурой, но выполняющие различные физиологические функции:
- пероксисомы
- глиоксисомы
Пероксисомы многочисленны в клетках листьев, где они тесно связаны с хлоропластами. В них происходят реакции светового дыхания ? поглощение О2 и выделение СО2 на свету, то есть процесс, противоположный световым реакциям фотосинтеза.
Глиоксисомы возникают при прорастании семян и участвуют в превращении жирных масел эндосперма в сахара.
Липидные капли
Липидные капли — это структуры сферической формы, содержащие липиды, размером около 0,5 мкм.
Похожие, но более мелкие капли пластоглобулы встречаются в пластидах.
Липидные капли первоначально принимали за органеллы и называли сферосомами (за идеально округлую форму). Считалось, что они окружены двуслойной или однослойной мембраной. Однако последние данные показывают, что у липидных капель нет мембраны, но они могут быть покрыты белком.
Микротрубочки
Микротрубочки обнаружены практически во всех эукариотических клетках, это тонкие цилиндрические структуры диаметром около 24 нм. Длина их варьируется.
Каждая микротрубочка состоит из субъединиц белка ? тубулина. Субъединицы образуют 13 продольных нитей, окружающих центральную полость.
Микротрубочки представляют собой динамические структуры, они регулярно разрушаются и образуются вновь на определенных стадиях клеточного цикла.
У микротрубочек много функций. Одна из наиболее важных — это участие в формировании клеточной оболочки. По-видимому, микротрубочки контролируют и ориентируют упаковку целлюлозных микрофибрилл.
Микрофиламенты
Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Они представляют собой длинные нити толщиной 5 — 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов играют ведущую роль в токах цитоплазмы.
Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.
Основное вещество — гиалоплазма
Еще недавно основное вещество клетки считали гомогенным и бесструктурным гелем.
Однако последние исследования показали, что основное вещество обладает сложной структурой. Под электронным микроскопом было обнаружено, что основное вещество представляет собой трехмерную решетку, построенную из тонких (диаметром 3 — 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, в том числе микротрубочки и микрофиламенты, подвешены на этой микротрабекулярной решетке.
Микротрабекулярная решетка делит клетку на 2 фазы:
- богатые белком тяжи решетки
- богатое водой пространство между тяжами.
Вместе с водой решетка имеет консистенцию геля.
Микротрабекулярная решетка осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт.
Эргастические вещества или включения
Эргастические вещества — это пассивные продукты метаболизма: запасные вещества или отходы. Обычно они представлены в форме разнообразных кристаллоподобных включений. К образованию включений приводит избыточное накопление некоторых веществ, по тем или иным причинам выключаемых из обмена и выпадающих в осадок.
К эргастическим веществам относятся крахмальные зерна, кристаллы, зерна белка, липидные капли, смолы и др.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник