Структура клетки и ее польза

Клетки делятся на прокариотические и эукариотические. Первые — это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, — хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Эукариотическая клетка

Прокариотическая клетка

Строение

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) — это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки, Человеческий организм — слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань — это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная — защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная — жировая, хрящевая и костная. Выполняет различные функции.

Мышечная — гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная — нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных — это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, — 220 мм — больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити — хромосомы. Хромосома состоит из двух половин — хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии — это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки — от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол — цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент — цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы — это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма — это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду — гиалоплазму — вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Читайте также:  Письмо о задолженность в пользу перед

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум — это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

Источник

Клетка, — это базовая единица всего живого, кроме вирусов. Все остальные животные, растения, бактерии – всё состоит из клеток. Даже наши волосы и ногти построены из клеток, только отмерших.

Человеческий организм состоит, по самым скромным подсчётам, из 30 триллионов клеток. Для сравнения – на земле живёт всего 7 миллиардов людей. Вдумайтесь — каждый из нас состоит их грандиозного количества маленьких живых существ, которых в 4200 раз больше, чем людей на всей нашей планете!

При этом любая клетка, несмотря на крохотные размеры – штука вполне самостоятельная и ограничена от внешнего мира плотной, но эластичной стенкой-мембраной. Клетка рождается, живёт, питается, делится и умирает. Внутри её происходит собственный обмен веществ.

И, несмотря на крохотные размеры, клетка невероятно сложна. Клетка — если и не целый мир, то уж огромный биохимический завод – точно. Он состоит из отдельных «цехов» – органелл, обладающих определённой автономностью.

Строение клетки в разрезе

Даже одна из самых простых органелл – клеточная мембрана (по сути, обычная перегородка!) удивляет своей сложностью. И это позволяет ей выполнять десятки самых разных функций. А у митохондрий есть даже собственная ДНК! Это значит, что когда-то, в глубокой древности, они были самостоятельными организмами.

Клеточная мембрана — едва ли не простейший элемент клетки

Типы клеток и их внешний вид

Организм человека состоит из клеток самых разных типов. Они абсолютно разные. То есть, совершенно. Нервные клетки отличаются от клеток, скажем, кишечника, как небо и земля. Кстати, на самом деле нервных клеток тоже множество типов, и они мало похожи друг на друга.

Клетка Панета тонкой кишки. Обеспечивают антибактериальную защиту.

Нервная клетка типа Веретенообразный нейрон (иначе — нейроны фон Экономо). Служит для быстрой передачи информации.

Нервная клетка типа Клетка Пуркинье

Общее количество типов клеток в человеческом организме до сих пор точно не установлено, ведь учёные постоянно открывают всё новые и новые типы. Но только основных, базовых разновидностей клеток известно более 200, и это не считая подтипов.

Формы клеток совершенно различны – сферы, кубы, параллелепипеды, сложные многогранники нити, «кусты», … и вообще бесформенные клетки, форму которых тяжело определить одним словом.

В общем, фантастическое разнообразие типов, форм, цветов и функций.

Да, человек, устроен сложно.

Продолжительность жизни клеток организма.
Смертные и бессмертные клетки.

Большинство клеток в организме на протяжении всей жизни человека возникают и отмирают, а на их место приходят новые. Это, условно говоря, смертные клетки. Размножаются они обычным делением (митозом), а потому количество их не уменьшается, — на место отмерших приходят новые. Так, клетки кишечника живут в среднем до 5 дней, клетки крови тромбоциты до 10 дней, эритроциты — 120 дней, клетки кожи от 10-ти до 30-ти, а печени – около 480 дней. То есть, за 80-летнюю жизнь человек полностью «меняет» кишечник почти 6000 раз, а печень – всего 60 раз.

Но есть клетки, способные жить более 100 лет. Их мы условно назовём «бессмертными». Их в организме меньше, чем «смертных», но всё равно число внушительное. Так, нейронов – клеток нервной системы, — не менее 85 миллиардов. Кроме них к бессмертным относятся и половые клетки, а также некоторые клетки мышц.

Несмотря на условное бессмертие, эти клетки вполне себе успешно гибнут от, скажем так, несчастных случаев. Но на их место всё равно приходят новые. Так, нейроны появляются из стволовых клеток, которые, образно говоря, являются «болванками», «заготовками» для производства новых клеток практически любого типа. Они тоже бессмертны, поскольку могут делиться бесконечное количество раз. К условно-бессмертным относятся, увы, и раковые образования, также не имеющие предела деления. Обычные же, «смертные» клетки могут делиться около 52-х раз, чуть больше или чуть меньше (число их возможных делений называется «пределом Хейфлика»).

Такая «несправедливость» связана, по всей видимости, с естественным процессом сокращения концевых участков т.н. теломеров (от др.-греч. τέλος – конец и μέρος — часть) – концевых участков хромосом. При каждом делении обычной клетки (а этих делений может быть плюс-минус 52), теломеры сокращаются. Когда они исчезают совсем, организм просто убивает клетку, поскольку считает её старой и ни на что негодной. Процесс «планового убийства» клеток носит название апоптоз.

Читайте также:  Исследовательская работа на тему вред и польза компьютера

При этом, однако, организм исправно снабжает «бессмертные» клетки (и раковые в том числе!) специальным ферментом – теломеразой, — который удлиняет теломеры и, таким образом, отменяет необходимость апоптоза.

Поэтому, к слову, рак так трудно победить. Для этого нужно запретить организму снабжать раковые образования теломеразой. Но как это сделать, мы пока не знаем.

Но узнаем обязательно.

Химический состав клетки

Он, естественно, различен для клеток разных типов, но в целом можно говорить об определённой выдержанности состава (но не содержаний конкретных элементов, которые значительно отличаются).

В состав клетки входит практически вся таблица Менделеева (кроме самых тяжёлых элементов) и плюс большое количество органических соединений. То есть, можно говорить о том, что в клетке есть практически всё, что есть в природе. В настоящий момент считается, что в составе клетки насчитывается около 90 химических элементов. 25 из них важны для нормального функционирования организма, а 18 – жизненно необходимы.

Неорганические вещества принято разделять на 4 группы:

Биоэлементы (иначе – органогены)

ЭлементСодержание, %
Кислород65-75
Углерод15-18
Водород8-10
Азот2-3
Всегоок. 98%

Макроэлементы (иначе – минералы)

ЭлементСодержание, %
Кальций0,04-2,00
Фосфор0,2-1,0
Калий0,15-0,4
Сера0,15-0,2
Хлор0,05-0,1
Натрий0,02-0,03
Магний0,02-0,03
Железо0,01-0,015
Всегодо 1.98%

Микроэлементы (иначе – минералы)

ЭлементСодержание, %
Цинкдо 0,001
Медьдо 0,001
Хромдо 0,001
Ванадийдо 0,001
Ванадийдо 0,001
Германийдо 0,001
Йоддо 0,001
Марганецдо 0,001
Кобальтдо 0,001
Никельдо 0,001
Селендо 0,001
Фтордо 0,001
Рутенийдо 0,001
Молибдендо 0,001
Бордо 0,001
Всегодо 0.02%

Ультрамикроэлементы

ЭлементСодержание, %
Золотодо 0,0000001
Серебродо 0,0000001
Платинадо 0,0000001
Ртутьдо 0,0000001
Цезийдо 0,0000001
Бериллийдо 0,0000001
Радийдо 0,0000001
Урандо 0,0000001
и около 50-ти других 
Всегоменее 0.00001%

Органические вещества, состоящие, в свою очередь, из неорганических химических  элементов, в среднем составляют следующий проценты от общей массы клетки:

ВеществоСодержание, %
Белки и аминокислоты10-20
Жиры (липиды)1-5  
Углеводы (моно-, ди- и полисахариды)0,2-2,0
Нуклеиновые кислоты (биополимеры; в т.ч. ДНК и РНК)1-2
Низкомолекулярные органические вещества, в т.ч. аденозинтрифосфат0,1-0,5
Биологически активные вещества и ферментыок. 0,1

Все элементы и вещества, входящие в состав клетки, выполняют одну, а чаще множество функций. Впрочем, назначение некоторых ультрамикроэлементов пока не установлено.

Питание клетки

Питанием клетки называется процесса захвата (иначе — интернализации) из внешней среды необходимых веществ, иногда в виде отдельных молекул химических элементов, иногда целых их групп (пищевых частиц). Практически все химические элементы, из которых состоят клетки, не синтезируются организмом и должны поступать извне.

Чтобы клетка смогла захватить нужные вещества, они должны предварительно поступить в т.н. внеклеточный матрикс – субстанцию, заполняющую пространство между клетками. К матриксу причисляют также плазму крови и лимфатическую жидкость.

Молекулы гиалуроновой кислоты (красно-оранжевые) во внеклеточном матриксе

В состав матрикса входят коллаген, фибрин, эластин, гликопротеины, протеогликаны, гиалуроновая кислота, а также, в меньшем количество, фибронектины, ламинины и нидогены. Естественно, матрикс сам нуждается в «строительном материале» для своих компонентов, которые также должны привноситься извне.

Есть два принципиально разных способа использования клеткой полученного питания. Первый из них – ассимиляция — подразумевает, что молекулы питательных веществ захватываются и либо напрямую усваиваются клеткой, либо используются ей для построения других нужных её молекул. Второй – диссимиляция (или клеточное дыхание) – заключается в преобразовании полученных веществ в энергию, необходимую для выполнения различных функций.

Клетка не только питается, но и выводит остатки своей жизнедеятельности. И также через мембрану, откуда они выводятся дальше, через лимфатическую и другие системы организма. То есть, клетка, подобно человеку, имеет настоящую пищеварительную систему.

Естественно предположить, что нормальное «пищеварение» клеток — основа здоровья организма в целом. Поэтому, формируя рацион питания, мы должны думать не о том, как насытить свой желудок, а о том, как предоставить всем клеткам нужное им питание. А это, как мы уже установили, не более и не менее, как 90 химических элементов. И если с биоэлементами обычно никаких проблем нет, то на уровне макроэлементов уже начинаются трудности. Одних поступает больше, других меньше, третьи отсутствуют совсем. С микроэлементами дело обстоит ещё хуже. Человеческий организм имеет колоссальный ресурс для выживания даже при самом отвратительном питании (например, как у тибетских монахов), но речь идёт именно о выживании, а не полноценной жизни и, тем более, расширении его возможностей. Поэтому учёные поднимают вопрос полноценного питания клеток встаёт всё чаще. Он обязательно должен быть решён каждым из нас как можно раньше и полнее.

Клеточное питание – это как раз об этом.

Источник

Структура клетки

Публикация 3

Клетка – это наименьшая живая структура организма. Все живые ткани тела человека состоят из клеток – микроскопических, окруженных мембраной элементов, заполненных концентрированным раствором химических веществ.

Читайте также:  Польза занятий в тренажерном зале для здоровья

В нашем организме от 50 до 75 триллионов клеток, и их возможности поражают воображение.

Казалось бы, ну что такого необычного представляет собой эта «структурно-функциональная элементарная единица строения организма»? Ядро, цитоплазма, мембрана и прочее внутреннее содержание как бы не предполагают наличия сообразительности. Тем не менее именно на клеточном уровне проявляется способность тела противостоять различного рода напастям. Как это работает?

Каждая ткань тела человека образована группами клеток, которые выполняют определенные функции и объединены между собой сложными взаимосвязями. В организме известно более двухсот различных типов клеток. Несмотря на всю сложность внутриклеточных и межклеточных процессов, конечная структура тела организована за счет ограниченного числа клеточных функций. Большинство клеток растут, делятся и погибают в процессе выполнения своих функций, специфичных для каждого типа ткани, например, обеспечивая мышечное сокращение.

Внутри клетки находятся структурные элементы – органеллы, которые участвуют в клеточном метаболизме и жизненном цикле. Последний включает усвоение питательных веществ, деление клетки и синтез белков – молекул, ответственных за большинство клеточных ферментативных, метаболических и структурных функций.

Бессмертные клетки

В отличие от нормальных, HeLa-клетки продолжают делиться неопределенно долго

В отличие от нормальных, HeLa-клетки продолжают делиться неопределенно долго »Большая часть клеток, выращенных в лабораторных условиях, мoгут совершать только 50 делений, а затем погибают. Бессмертные клетки – клетки, которые мoгут делиться в чашках Петри неопределенно долго, чрезвычайно полезны в научных исследованиях.

В 1951 году у 31-летней американки Генриеты Лэкс обнаружили патологический участок на поверхности шейки матки. Образцы ткани были взяты на биопсию для определения характера процесса.

В лаборатории выяснилось, что клетки принадлежали злокачественной опухоли, и, несмотря на лечение, пациентка умерла через 8 месяцев после установления диагноза рака шейки матки.

Образец клеток был направлен в лабораторию Джорджа Джея – передовую на тот момент времени лабораторию культивирования тканей. Через несколько недель работы с клетками ученый заявил, что это самые быстро делящиеся клетки, которые он когда-либо видел.

Оказалось, что эти клетки, теперь называемые HeLa-клетками, потенциально бессмертны, а пoскольку они делились крайне быстро, их образцы скоро стали доступны для изучения другим ученым и широко используются в биологических испытаниях по сей день. Благодаря этим исследованиям была, в частности, создана вакцина против полиомиелита.

К сожалению, HeLa-клетки обладают способностью «заражать» и уничтожать другие клетки, выращиваемые в лабораториях.

Были даже случаи, когда ученые проводили исследования определенного типа клеток, не зная, что они были уже замещены HeLa-клетками.

HeLa-клетки до сих пор существуют в лабораторных культурах. Колонии клеток удается поддерживать в течение почти 60 лет после того, как была удалена опухоль шейки матки Генриетты Пэке.

Структура клетки

Форма клеток различается в зависимости oт выполняемой функции

Форма клеток различается в зависимости от выполняемой функции »Внутри клетки находится ДНК-содержащее ядро и структурные элементы – органеллы, снаружи клетку окружает цитоплазматическая мембрана. Каждый клеточный компонент выполняет специфическую функцию, в числе которых, например, продукция энергии, накопление или синтез белков.

Цитоплазматическая мембрана

Цитоплазматическая мембрана окружает каждую клетку и отделяет ее содержимое от внеклеточной среды и других клеток.

Внутри клетки находится раствор белков, электролитов и углеводов – цитозоль, а также ограниченные мембраной субклеточные структуры – органеллы. Цитоплазматическая мембрана пронизана белками, которые обеспечивают связь клетки с окружающей средой и транспорт питательных веществ и продуктов обмена.

Ядро

Ядро – это центральная структура клетки, содержащая клеточную ДНК, организованную в хромосомы, а также структурные белки, ответственные за «сворачивание» и защиту ДНК. Ядро окружено мембраной с крупными порами, через которые осуществляется молекулярный обмен между ядром и цитозолем, однако хромосомы всегда остаются внутри ядра.

Внутри клетки

Цитоплазма – внутренняя среда клетки, которая содержит жидкость (цитозоль) и большое количество органелл, в то время как ядро имеет свою собственную среду. К внутриклеточным органеллам относятся:

Митохондрии

Ответственны за синтез энергии в клетке. Питательные вещества в виде сахаров и жиров расщепляются в присутствии кислорода с образованием АТФ (аденозин-трифосфата) – источника энергии в клетке.

Рибосомы

Выполняют функцию синтеза белка на основе матрицы, зашифрованной в генетическом материале клетки.

Эндоплазматический ретикулум

Обширная сеть трубочек, мешочков и пластов мембраны, которая пронизывает всю клетку. Обеспечивает транспорт и хранение молекул в клетке.

Аппарат Гольджи

Система уплощенных мешочков, необходимых для обработки, «упаковки» и сортировки крупных молекул в клетке.

Везикулы и вакуоли

Везикулы – это окруженные мембраной структуры, участвующие в специфических внутриклеточных процессах. Вакуоли под микроскопом выглядят как «полости» и представляют собой места хранения и обработки химических компонентов клетки.

Цитоскелет

Тонкая ячеистая структура белковых нитей, которая поддерживает форму клетки, является опорой для органелл, а также составляет основу клеточных движений.

Как работают клетки нашего организма.

Благодарю, что дочитали! Нажмите пожалуйста палец вверх! Подпишитесь пожалуйста на канал!

Читайте также:

Источник