В чем польза силы тяжести
Семнадцатый век недаром называют веком великих астрономических открытий. Многолетние наблюдения Галилея, Коперника, Тихо Браге дали возможность сформировать Иоганну Кеплеру законы движения небесных тел. Для того чтобы объяснить, почему планеты находятся в бесконечном движении, что заставляет их оставаться на своей орбите и что такое сила тяжести, понадобился гений – Исаак Ньютон.
Гипотезы гения
Свои законы о движении Исаак Ньютон сформулировал не для теории, а для практического применения. Обобщая данные многолетних астрономических наблюдений и благодаря своим законам о движении, этот великий ученый смог ответить на вопрос, который ставил в тупик не одно поколение ученых: «Что удерживает планеты на своих орбитах?» Ведь до Ньютона учеными выдвигались разные предположения – от хрустальных сфер до магнитных флюидов. Благодаря первому закону Ньютона стало ясно, что для равномерного прямолинейного движения сила не нужна. Сила необходима для того, чтобы заставить планеты двигаться по криволинейной орбите. Если применить формулу силы из второго закона Ньютона, то она будет равна произведению ускорения на массу. Ньютон пришел к выводу, что ускорение должно быть равным v2 /R. Так более легкое небесное тело, Луна например, будет вращаться вокруг более тяжелого, но никогда не станет к нему приближаться. Это можно представить себе как падение с касательной к окружности на саму окружность. В точке соприкосновения скорость может быть постоянной или равной нулю, но ускорение присутствует всегда. Постоянное движение по заданной орбите без отсутствия видимого ускорения – вот ответ Ньютона на вопрос о движении планет.
Притяжение
Так, Луна движется вокруг Земли, а Земля – вокруг Солнца, повинуясь некой силе. Гениальность Ньютона проявилась в том, что он объединил силу притяжения небесных тел с силой тяжести, которая известна каждому жителю Земли. Существует легенда, что к правильным выводам Ньютона подтолкнуло обычное яблоко, упавшее ему на голову. Притяжение яблока и Луны к Земле описывается по абсолютно одинаковым законам – сделал вывод исследователь. Свое второе название сила тяжести получила от слова «гравис», что означает «вес».
Гравитация
Обобщив законы движения планет, Ньютон выяснил, что сила их взаимодействия может быть вычислена по формуле:
Где m1 m2 – массы взаимодействующих тел, R – расстояние между ними, а G – некий коэффициент пропорциональности, получивший название гравитационной постоянной. Слово «гравитация» подобрано абсолютно правильно, ведь происходит оно от слова «вес». Точное число постоянной Ньютону известно не было, гораздо позже значение G установил Кавендиш. Можно видеть, что на действие силы притяжения влияют массы тел и учитывается расстояние между ними. Никакие другие факторы на силу притяжения влиять не могут.
Значение закона притяжения
Данный закон универсален и может применяться к любым двум телам, имеющим массу. В случае, когда масса одного взаимодействующего тела много больше массы другого, можно говорить о частном случае гравитационной силы, для которого имеется специальный термин “сила тяжести”. Это понятие применяется для задач, вычисляющих силу притяжения на Земле или других небесных телах. Если подставить значение силы тяжести в формулу второго закона Ньютона, то получим значение F=ma. Здесь а – ускорение силы тяжести, которое заставляет тела стремиться друг к другу. В задачах, связанных с использованием ускорения свободного падения, его обычно обозначают буквой g. С помощью разработанного им интегрального исчисления Ньютон математически доказал, что сила тяжести в шаре всегда сосредоточена в центре большего тела. В паре яблоко-Земля вектор ускорения направлен к центру земли, в паре Земля-Солнце направлен к Солнцу и так далее.
Зависимости силы тяжести от широты
Сила тяжести на Земле зависит от высоты тела под поверхностью планеты и от широты, на которой проводится эксперимент. Высота тела влияет на значение R, как видно, чем дальше расстояние от поверхности Земли, тем величина g меньше. Связь силы тяжести с широтой объясняется тем, что Земля имеет форму не шара, а геоида. У полюсов она немного сплюснута. Поэтому расстояние от центра Земли до экватора и до полюса будет разным – до 10 %. Такое расхождение делает весьма неудобным расчеты, например расчеты грузов трансконтинентальных перевозок. Поэтому за основу принимают показатель силы притяжения на средних широтах 9,81 м/с2 .
Вес тела
В быту широко применяется такое понятие, как вес тела. В физике он обозначается буквой P. Вес – это сила, с которой тело давит на опору. В бытовом понятии вес часто подменяется понятием «масса», хотя это совершенно разные величины. В зависимости от того, какое значение принимает сила тяжести, изменяется и вес тела. Например, вес свинцовой детали на Земле и Луне будет отличаться. А вот масса остается неизменной и на Земле, и на Луне. Кроме этого, в определенных случаях вес тела может быть нулевым. Вес – величина, имеющая направление, а масса – скаляр.
Но так как согласно третьему закону Ньютона действие равно противодействию, вес тела равен силе реакции опоры.
Так как силу реакции простой опоры измерить довольно трудно, то опыт можно «перевернуть», подвесив какое-либо тело на пружину и измеряя степень растяжения этой пружины. При этом сила, растягивающая пружину с грузом, будет иметь вполне логичное F=mg, где m – масса, а g – ускорение свободного падения.
Перегрузка
Если груз с пружинкой поднять вверх, то ускорение силы тяжести и ускорение подъема будут направлены в противоположные стороны. Представить это можно так: F = m(g+a). Сила тяжести, а соответственно, и его вес, возрастают.
Для увеличения веса, связанного с дополнительным ускорением, существует специальный термин – перегрузка. Действие перегрузки испытывал каждый из нас, поднимаясь на лифте или взлетая на самолете. Особенно сильную перегрузку испытывают на себе космонавты и летчики сверхзвуковых самолетов при взлете своих летательных аппаратов.
Невесомость
Когда телу придается ускорение в направлении силы тяжести, то есть вниз в нашем случае, тогда F=m(g-a). Так, вес тела становится меньше. В предельном случае, когда a=g и направлены они в разные стороны, можно говорить о нулевом весе, то есть тело падает с постоянной скоростью. Состояние, при котором вес тела является нулевым, называют невесомостью. Человек испытывает состояние невесомости в космическом корабле, когда он движется с выключенными двигателями. Невесомость – обычное состояние для космонавтов и летчиков, летающих на сверхзвуковых самолетах.
Значение силы тяжести
Без силы тяжести не происходило бы многих, кажущихся нам естественными, вещей – не сходили бы лавины с гор, не шли бы дожди, не текли бы реки. Атмосфера Земли сохраняется благодаря силе тяжести. Для сравнения, планеты с меньшей массой, такие как Луна или Меркурий, растеряли свою атмосферу очень быстро и остались беззащитными перед потоком жесткого космического излучения. Атмосфера Земли играла решающую роль при возникновении жизни на Земле, ее видоизменении и сохранении.
Кроме силы тяжести, на Земле действует сила притяжения Луны. Благодаря ее близкому (в космических масштабах) соседству на Земле существуют приливы и отливы, сдвигаются континенты, а многие биологические ритмы совпадают с лунным календарем.
Таким образом, силу тяжести нужно рассматривать не как досадную помеху, а как полезный и необходимый закон природы.
Источник
Си́ла тя́жести — сила, действующая на любое физическое тело вблизи поверхности астрономического объекта (планеты, звезды) и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением[1][2].
Прочие приложенные к телу силы — такие как силы Кориолиса[3][4][5] при движении тела по поверхности планеты и Архимеда при наличии атмосферы или жидкости — в силу тяжести не включаются.
В большинстве практических случаев анализируется сила тяжести вблизи Земли. Для неё величина центробежной силы составляет доли процента от величины гравитационной и иногда игнорируется.
Сила тяжести , действующая на материальную точку массой , вычисляется по формуле[6]
,
где — ускорение свободного падения[7]. Сила тяжести является консервативной[8]. Она сообщает любому телу, независимо от его массы, ускорение [6]. Значение диктуется параметрами (массой , размерами, скоростью вращения ) планеты или звезды и координатами на её поверхности.
Если в пределах протяжённого тела поле тяжести приблизительно однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
В нерусскоязычной литературе термин «сила тяжести» не вводится — вместо этого говорят о фундаментальном гравитационном взаимодействии, при необходимости делая уточнение о центробежной добавке.
Cила тяжести mg складывается из гравитационного притяжения планеты GMm/r2 и центробежной силы инерции mω2a.
История[править | править код]
Личности, внёсшие исторический вклад в развитие представлений о силе тяжести:
Аристотель объяснял силу тяжести движением тяжёлых физических стихий (земля, вода) к своему естественному месту (центру Вселенной внутри Земли), причём скорость тем больше, чем ближе тяжёлое тело к нему[10].
Архимед рассмотрел вопрос о центре тяжести параллелограмма, треугольника, трапеции и параболического сегмента. В сочинении «О плавающих телах» Архимед доказал закон гидростатики, носящий его имя[10].
Иордан Неморарий в сочинении «О тяжестях» при рассмотрении грузов на наклонной плоскости разлагал их силы тяжести на нормальную и параллельную наклонной плоскости составляющие, был близок к определению статического момента[11].
Стевин экспериментально определил, что тела разных масс падают с одинаковым ускорением, установил теоремы о давлении жидкости в сосудах (давление зависит только от глубины и не зависит от величины, формы и объёма сосуда) и о равновесии грузов на наклонной плоскости (на наклонных плоскостях равной высоты силы, действующие со стороны уравновешивающихся грузов вдоль наклонных плоскостей, обратно пропорциональны длинам этих плоскостей). Доказал теорему, согласно которой в случае равновесия центр тяжести однородного плавающего тела должен находиться выше центра тяжести вытесненной жидкости[12].
Галилей экспериментально исследовал законы падения тел (ускорение не зависит от веса тела), колебаний маятников (период колебаний не зависит от веса маятника) и движения по наклонной плоскости[13].
Гюйгенс создал классическую теорию движения маятника, оказавшую значительное влияние на теорию тяготения[13].
Декарт разработал кинетическую теорию тяготения, объяснявшую силу тяжести взаимодействием тел с небесным флюидом, выдвинул гипотезу о зависимости силы тяжести от расстояния между тяжёлым телом и центром Земли[13].
Ньютон из равенства ускорений падающих тел и второго закона Ньютона сделал вывод о пропорциональности силы тяжести массам тел и установил, что сила тяжести является одним из проявлений силы всемирного тяготения[14][15]. Для проверки этой идеи он сравнил ускорение свободного падения тел у поверхности Земли с ускорением Луны на орбите, по которой она движется относительно Земли[16].
Эйнштейн объяснил факт равенства ускорений падающих тел независимо от их массы (эквивалентность инертной и тяжёлой массы)
как следствие принципа эквивалентности равномерно ускоренной системы отсчёта и системы отсчёта, находящейся в гравитационном поле[17].
Сила тяжести в различных ситуациях[править | править код]
Сферически симметричный небесный объект[править | править код]
В соответствии с законом всемирного тяготения, модуль силы гравитационного притяжения , действующей на материальную точку на поверхности астрономического объекта со сферически симметричным распределением массы по объёму, определяется соотношением
,
где — гравитационная постоянная, равная 6,67384(80)·10−11м3·с−2·кг−1, — радиус астрономического тела, — его масса, — масса материальной точки. Сила гравитационного притяжения направлена к центру тела.
Модуль центробежной силы инерции , действующей на материальную точку, задаётся формулой
,
где — расстояние между частицей и осью вращения рассматриваемого астрономического объекта, — угловая скорость его вращения. Центробежная сила инерции перпендикулярна оси и направлена от неё.
Сита тяжести вычисляется по теореме косинусов:
.
Здесь — «широта» места на планете или звезде, для которого производится расчёт.
Планеты Солнечной системы в шаровом приближении[править | править код]
Приближённо, Солнце и планеты Солнечной системы можно рассматривать как сферически симметричные астрономические объекты, а при грубом вычислении брать широту = 450 («посредине»). Сравнение силы тяжести, оцененной в таком приближении, на поверхностях[18] ряда планет представлено в таблице. За единицу принята сила тяжести на Земле[19].
Земля | 1,00 | Солнце | 27,85 |
Луна | 0,165 | Меркурий | 0,375—0,381 |
Венера | 0,906 | Марс | 0,394 |
Юпитер | 2,442 | Сатурн | 1,065 |
Уран | 0,903 | Нептун | 1,131 |
В условиях Земли и других планет, поправки, вносимые общей теорией относительности в закон всемирного тяготения, крайне малы (модуль гравитационного потенциала на поверхности Земли, равный половине квадрата второй космической скорости , крайне мал по сравнению с квадратом скорости света: )[20].
Планета Земля с учётом особенностей её формы[править | править код]
Форма Земли (геоид) отличается от строго шарообразной и близка к сплюснутому эллипсоиду.
Соответственно, в более точном, чем шаровое, приближении, сила гравитационного притяжения, действующая на материальную точку массой , определяется выражением
,
где — элемент массы Земли ( — плотность), и — радиус-векторы точки измерения и элемента массы Земли соответственно. Интегрирование выполняется по всему объёму Земли.
В векторной форме выражение для центробежной силы инерции можно записать в виде
,
где — вектор, перпендикулярный оси вращения и проведённый от неё к точке измерения.
Сила тяжести является суммой и :
Сила тяжести вблизи поверхности Земли зависит от широты места и высоты над уровнем моря. Широтное изменение связано как с отклонением формы Земли от шарообразной, так и с наличием центробежной силы. Приблизительное выражение для абсолютной величины силы тяжести в системе СИ имеет вид[7]
Угол между силой тяжести и силой гравитационного притяжения к Земле равен[21]:
.
Он изменяется в пределах от нуля (на экваторе, где и на полюсах, где ) до рад или (на широте ).
Дополнительно, можно учесть эффект притяжения Луны и Солнца (искусственно введя временные изменения гравитационного поля Земли, то есть добавки к ), несмотря на его малость[22][23][24].
Статика и динамика тела в поле тяжести Земли[править | править код]
Устойчивость тела в поле силы тяжести[править | править код]
Для тела в поле силы тяжести, опирающегося на одну точку (например при подвешивании тела за одну точку или помещении шара на плоскость) для устойчивого равновесия необходимо, чтобы центр тяжести тела занимал наинизшее положение по сравнению со всеми возможными соседними положениями[25].
Для тела в поле силы тяжести, опирающегося на несколько точек (например, стол) или на целую площадку (например, ящик на горизонтальной плоскости) для устойчивого равновесия необходимо, чтобы вертикаль, проведённая через центр тяжести, проходила внутри площади опоры тела. Площадью опоры тела называется контур, соединяющий точки опоры или внутри площадки, на которое опирается тело[25].
Потенциальная энергия поднятого над Землей тела[править | править код]
Потенциальная энергия поднятого над Землей тела может быть найдена как взятая с обратным знаком работа силы тяжести при перемещении тела с поверхности Земли в данное положение. Если пренебречь центробежной силой и считать Землю шаром, эта энергия равна:
,
где — гравитационная постоянная, — масса Земли, — масса тела, — радиус Земли, — расстояние от тела до центра Земли.
При удалении тела от поверхности Земли не небольшие, по сравнению с , расстояния поле тяготения можно считать однородным, а ускорение свободного падения постоянным. В этом случае при подъёме тела массой на высоту от поверхности Земли сила тяжести совершает работу . Поэтому потенциальная энергия тела составляет , если за нуль энергии взята энергия на поверхности планеты. Тело, находящееся на глубине от поверхности Земли, обладает отрицательным значением потенциальной энергии [26].
Движение тел под действием силы тяжести Земли[править | править код]
В случае, когда модуль перемещения тела много меньше расстояния до центра Земли, можно считать силу тяжести постоянной, а движение тела равноускоренным. Если начальная скорость тела отлична от нуля и её вектор направлен не по вертикали, то под действием силы тяжести тело движется по параболической траектории.
При бросании тела с некоторой высоты параллельно поверхности Земли дальность полёта увеличивается с ростом начальной скорости. При больших значениях начальной скорости для вычисления траектории тела необходимо учитывать шарообразную форму Земли и изменение направления силы тяжести в разных точках траектории.
При некотором значении скорости, называемом первой космической скоростью, тело, брошенное по касательной к поверхности Земли, под действием силы тяжести при отсутствии сопротивления со стороны атмосферы может двигаться вокруг Земли по окружности, не падая на Землю. При скорости, превышающую вторую космическую скорость, тело уходит от поверхности Земли в бесконечность по гиперболической траектории. При скоростях, промежуточных между первой и второй космическими, тело движется вокруг Земли по эллиптической траектории[27].
Глобальная роль силы тяжести в природе[править | править код]
В эволюции строения планет и звёзд[править | править код]
Сила тяжести играет огромную роль в процессах эволюции звёзд. Для звёзд, находящихся на этапе главной последовательности своей эволюции, сила тяжести является одним из важных факторов, обеспечивающих условия, необходимые для термоядерного синтеза. На заключительных этапах эволюции звёзд, в процессе их коллапса, благодаря силе тяжести, не скомпенсированной силами внутреннего давления, звёзды превращаются в нейтронные звёзды или чёрные дыры.
Сила тяжести важна для формирования внутренней структуры планет, включая Землю, и тектонической эволюции их поверхностей[28]. Чем больше сила тяжести, тем большая масса метеоритного материала выпадает на единицу поверхности планеты[29]. За время существования Земли её масса существенно увеличилась благодаря силе тяжести: ежегодно на Землю оседает 30-40 млн. тонн метеоритного вещества, в основном в виде пыли, что значительно превышает рассеяние лёгких компонентов верхней атмосферы Земли в космосе[30].
Потенциальная энергия перемещаемых тектоническими процессами масс горных пород тратится на перемещение продуктов разрушения горных пород с повышенных участков поверхности на нижерасположенные[31].
В создании условий для жизни на Земле[править | править код]
Сила тяжести чрезвычайно значима для жизни на Земле[32]. Только благодаря ей у Земли есть атмосфера. Вследствие силы тяжести, действующей на воздух, существует атмосферное давление[33].
Без потенциальной энергии силы тяжести, непрерывно переходящей в кинетическую, круговорот вещества и энергии на Земле был бы невозможен[34].
При испарении воды с поверхности Земли энергия солнечной радиации трансформируется в потенциальную энергию водяного пара в атмосфере. Затем при выпадении атмосферных осадков на сушу она переходит при стоке в кинетическую энергию и совершает эрозионную работу в процессе переноса денудационного материала всей суши и делает возможным жизнь органического мира на Земле[35].
У всех живых организмов с нервной системой есть рецепторы, определяющие величину и направление силы тяжести и служащие для ориентировки в пространстве. У позвоночных организмов, в том числе человека, величину и направление силы тяжести определяет вестибулярный аппарат[36].
Наличие силы тяжести привело к возникновению у всех многоклеточных наземных организмов прочных скелетов, необходимых для её преодоления. У водных живых организмов силу тяжести уравновешивает гидростатическая сила[37].
Роль силы тяжести в процессах жизнедеятельности организмов изучает гравитационная биология[38].
Применение силы тяжести Земли в технике[править | править код]
Сила тяжести и принцип эквивалентности инертной и гравитационной массы используются для определения масс предметов путём их взвешивания на весах. Сила тяжести используется при отстойной сепарации газовых и жидких смесей, в процессах гравитационного обогащения полезных ископаемых, в некоторых типах часов, в отвесах и противовесах, машине Атвуда, машине Обербека и жидкостных барометрах. Сила тяжести используется на железнодорожном транспорте для скатывания вагонов с уклона на сортировочных горках, на заводах строительных изделий для транспортировки материалов в спускных лотках и спускных трубах.[39]
Точные измерения силы тяжести и её градиента (гравиметрия) используются при исследовании внутреннего строения Земли и при гравиразведке различных полезных ископаемых[40].
Методы измерения силы тяжести[править | править код]
Основной источник: [41]
Силу тяжести измеряют динамическими и статическими методами. Динамические методы используют наблюдение за движением тела под действием силы тяжести и измеряют время перехода тела из одного заранее определённого положения в другое. Они используют: колебания маятника, свободное падение тела, колебания струны с грузом. Статические методы используют наблюдение за изменением положения равновесия тела под действием силы тяжести и некоторой уравновешивающей её силы и измеряют линейное или угловое смещение тела.
Измерения силы тяжести бывают абсолютными и относительными. Абсолютные измерения определяют полное значение силы тяжести в заданной точке. Относительные измерения определяют разность силы тяжести в заданной точке и некоторого другого, заранее известного значения. Приборы, предназначенные для относительных измерений силы тяжести, называются гравиметрами.
Динамические методы определения силы тяжести могут быть как относительными, так и абсолютными, статические — только относительными.
См. также[править | править код]
- Вес
- Ускорение свободного падения
- Гравиметрия (геодезия)
Примечания[править | править код]
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит, 2005. — Т. I. Механика. — С. 372. — 560 с. — ISBN 5-9221-0225-7.
- ↑ Тарг С. М. Сила тяжести // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1994. — Т. 4. — С. 496. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
- ↑ Тарасов, 2012, с. 200, 270.
- ↑ Савельев, 1987, с. 128.
- ↑ Бутенин, 1971, с. 253-259.
- ↑ 1 2 Савельев, 1987, с. 70.
- ↑ 1 2 Ускорение свободного падения // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1998. — Т. 5. — С. 245—246. — 760 с. — ISBN 5-85270-101-7.
- ↑ Савельев, 1987, с. 82-83.
- ↑ Савельев, 1987, с. 156.
- ↑ 1 2 Зубов В. П. Физические идеи древности // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 38, 54-55;
- ↑ Зубов В. П. Физические идеи средневековья // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 114;
- ↑ Зубов В. П. Физические идеи ренессанса // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 151;
- ↑ 1 2 3 Кузнецов Б. Г. Генезис механического объяснения физических явлений и идеи картезианской физики // отв. ред.
Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 160-161, 169-170, 177; - ↑ Ньютон, 1989, с. 7.
- ↑ Кузнецов Б. Г. Основные принципы физики Ньютона // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 189-191;
- ↑ Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 323
- ↑ Иваненко Д. Д. Основные идеи общей теории относительности // отв. ред. Григорьян А. Т., Полак Л. С.
Очерки развития основных физических идей. — М., АН СССР, 1959. — С. 300; - ↑ У газовых гигантов «поверхность» понимается как область высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105Па).
- ↑ Данные взяты из статьи Википедии Ускорение свободного падения
- ↑ Грищук Л. П., Зельдович Я. Б. Тяготение // Физика космоса. Маленькая энциклопедия. — М., Советская энциклопедия, 1986. — С. 676
- ↑ Савельев, 1987, с. 122.
- ↑ Миронов, 1980, с. 49.
- ↑ Максимальное изменение силы тяжести, обусловленное притяжением Луны, составляет примерно м/с2, Солнца м/с2
- ↑ Миронов, 1980, с. 71.
- ↑ 1 2 Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика, теплота, молекулярная физика. — М., Наука, 1975. — Тираж 350 000 экз. — С. 189-190
- ↑ Кабардин О.Ф., Орлов В.А., Пономарева А.В. Факультативный курс физики. 8 класс. — М.: Просвещение, 1985. — Тираж 143 500 экз. — С. 151 – 152
- ↑ Жирнов Н. И. Классическая механика. — М., Просвещение, 1980. — Тираж 28000 экз. – с. 121
- ↑ Криволуцкий, 1985, с. 208.
- ↑ Криволуцкий, 1985, с. 77.
- ↑ Криволуцкий, 1985, с. 48, 237-238.
- ↑ Криволуцкий, 1985, с. 70, 234.
- ↑ Зельманов А. Л. Многообразие материального мира и проблема бесконечности Вселенной // Бесконечность и Вселенная. — М., Мысль, 1969. — Тираж 12000 экз. – С. 283
- ↑ Хромов С. П., Петросянц М. А. Метеорология и климатология. – М., МГУ, 2006. – ISBN 5-211-05207-2. – C. 67
- ↑ Криволуцкий, 1985, с. 289.
- ↑ Криволуцкий, 1985, с. 307.
- ↑ Юрий Фролов. https://www.nkj.ru/archive/articles/21172/ Наш гравитационный компас] (рус.) // Наука и жизнь. — 2012. — № 10.
- ↑ П. Кемп, К. Армс Введение в биологию. — М.: Мир, 1988. — ISBN 5-03-001286-9. — Тираж 125000 экз. — С. 75
- ↑ Лозовская Е. Жизнь с гравитацией и без нее (рус.) // Наука и жизнь. — 2004. — № 9.
- ↑ Фиделев А. С. Подъемно-транспортные машины и механизмы. – Киев, Будивельник, 1967. – 187-188
- ↑ Миронов, 1980, с. 1-543.
- ↑ Миронов, 1980, с. 94-262.
Литература[править | править код]
- Ньютон И. Математические начала натуральной философии. — М.: Наука, 1989. — 688 с. — ISBN 5-02-000747-1.
- Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — 688 с.
- Криволуцкий А. Е. Голубая планета. Земля среди планет. Географический аспект. — М.: Мысль, 1985. — 335 с.
- Миронов В. С. Курс гравиразведки. — Л.: Недра, 1980. — 543 с.
- Тарасов В. Н., Бояркина И. В., Коваленко М. В., Федорченко Н. П., Фисенко Н. И. Теоретическая механика. — М.: ТрансЛит, 2012. — 560 с.
- Бутенин Н. В. Введение в аналитическую механику. — М.: Наука, 1971. — 264 с. — 25 000 экз.
Источник