Вред и польза шлаковых отвалов

Вред и польза шлаковых отвалов thumbnail

Вред и польза шлаковых отвалов

Одним из наиболее опасных источников загрязнения природной среды являются техногенные минеральные образования (ТМО), формирующиеся в результате промышленной деятельности человека. Ежегодно мировая промышленность извлекает из недр Земли около 10 миллиардов тонн твердых веществ, 70% которых в последствии становятся отходами при производстве промышленной продукции. Расчёты показывают, что на территории России и стран СНГ запасы шлаковых отвалов достигают более 500 млн. тонн [1].

Наиболее остро проблема обращения с отходами производства проявляется именно в последнее время. Всё возрастающий интерес к ней в научной среде вызывается двумя основными факторами: в первую очередь усиливающимся дефицитом природных источников полезных для индустрии элементов, поэтому, ТМО представляют интерес как потенциальные источники природных ресурсов. Во вторую очередь, всё большее число учёных начинают обращать внимание на ТМО, как на комплексный источник загрязнения геосферы [2,3], следовательно, возникает необходимость в предотвращении загрязнения природной среды и во внедрении путей реабилитации.

Основная масса техногенных минеральных образований формируется в районах с развитой горноперерабатывающей и добывающей промышленностью. Одним из таких районов является город Карабаш Челябинской области, где в результате деятельности медеплавильного комбината ЗАО “КарабашМедь”, формируется огромное количество твёрдых отходов, складирующихся в отвалы металлургических шлаков. Общее количество медных шлаков составляет 20 млн. тонн. Шлаковые отвалы создают экологические проблемы, связанные с отчуждением земельных отводов, запыленностью, процессами естественного выщелачивания.

Целью данной работы является: моделирование процесса гидрогенного загрязнения окружающей среды от техногенных минеральных образований.

Для определения уровня загрязнения окружающей среды от металлургического шлака был смоделирован процесс гидролиза отвальной массы.

Воздух в районе исследования содержит в своём составе сернистый ангидрид (SO2) в концентрациях значительно превышающих фоновую, это связано с аэропромвыбросами Карабашского ГМК. Атмосферные осадки, проходя через толщу загрязнённого приземистого слоя атмосферы, взаимодействуют с SO2, в результате образуется серная кислота. В итоге на отвальную массу попадает дождевая вода с исходной концентрацией H2SO4 приблизительно равной – 0,0001н. Поэтому в качестве реагента для взаимодействия со шлаком использовалась серная кислота  концентрацией: 0,0001н. Масса подверженного выщелачиванию шлака составляет 267г.

Для моделирования процесса ускоренного гидролиза отвальной массы во времени, использовалась серная кислота в концентрациях превышающих исходную в: 10, 100, и 1000 раз. Это делалось, в первую очередь, для наиболее полного изучения миграции из шлака химических элементов, и во вторую очередь для сравнения полученных данных с результатами анализа элюатов представленных концентрацией H2SO4 эквивалентной дождевой воде.

Время взаимодействия серной кислоты со шлаком было определено в 14 дней, после чего брался элюат и шлак заливался вновь серной кислотой для снятия следующей пробы. Время в 14 дней было определено с учётом коэффициента фильтрации шлака, равному 3,3 м/сут.. Так как высота отвальной массы 32 м., то в течении 10 дней теоретически, кислота образовавшаяся на поверхности отвала, достигнет его основания, но с учётом наличия в отвальной массе различных литологических и геохимических барьеров, теоретическое время было увеличено до 14 суток. Итого было сделано по 13 промывок из 4 различных вариантов. Так же для выявления определяющей роли серной кислоты в процессе гидролиза шлака, было сделано 4 промывки отвальной массы дистиллированной водой, данные по анализу которых представлены в табл.1.

Таблица – 1. Содержание тяжелых металлов в элюате с дистиллированной водой, мг/л

CdCuPb
чистая H2O для отмывки0,0000670,0130,0041
1 промывка0,0191,00,014
2 промывка0,00960,370,011
3 промывка0,00830,310,00028
4 промывка0,001480,2290,000101
ПДКвр0,00110,03

Как видно, при действии на отвал дистиллированной водой, содержание тяжёлых металлов незначительно. Но, всё-таки, наблюдается некоторое превышение ПДК для водных объектов хозяйственно-питьевого и культурно-бытового водопользования (далее –  ПДК) по Cd и Pb. Вода слабо действует на силикатную матрицу, поэтому наличие ТМ в элюатах объясняется растворением веществ образующихся при выплавке металла. Выхода магния и железа при обработке отвальной массы дистиллированной водой не обнаружено, или же оно незначительно и выходит за границы определения. Следовательно, первичным фактором определяющим гидролиз отвальной массы, является серная кислота, содержащаяся в дождевой воде.

Результаты гидролиза шлака серной кислотой в различных концентрациях представлены в виде сводной таблицы, обобщающей выход исследуемых компонентов за всё время исследования (182 дня) и показывающий средний показатель значения pH (табл. 2).

Таблица – 2. Результаты химического анализа элюатов.

 

концентрация H2SO4

 

pH

Выход исследуемых компонентов из шлака, мг.
CaMgFePbCdCu
0,1н3,7530,266451,8898212,80,836660,059742,779
0,01н4,1148,29319,08317,8190,473120,0323374,715
0,001н4,664,261848,5870,40,123160,01895,245
0,0001н5,434,036923,81010,114070,0162570,615

На растворимость веществ, прямое влияние имеет значение энергии Гиббса (ΔG°f298.15). Численное значение ΔG показывает, как глубоко идет процесс растворения: чем отрицательнее ΔG, тем образуется более устойчивые соединения. Следовательно, можно связать энергию Гиббса и интенсивность выщелачивания элементов из шлака. Так, в процессе гидролиза отвальной массы наблюдается наибольший выход кальция (в 0,1н растворе 530,266 мг), значение ΔG°f298.15 для силиката кальция составляет: -1543,937 кДж/моль. Значение ΔG°f298.15 для силикатов магния, железа, меди, кадмия и свинца соответственно равны: -1462,098; -1117,546; -1112,245; -1106,253;       -1053,259 кДж/моль. Выход магния, железа, меди, кадмия и свинца соответственно обратно пропорционален увеличению энергии Гиббса: 451,889мг; 212,8мг; 2,779мг; 0,05974мг и 0,83666мг. Видно, что изложенная выше закономерность нарушается в отношении свинца и кадмия, это объясняется гораздо более большим содержанием свинца в шлаке, чем кадмия.

Что бы более детально оценить возможный уровень воздействия техногенного образования на окружающую среду, был произведён расчёт общего выхода ТМ из шлака. Оценка производилась для элюата  представленного 0,0001н серной кислотой и элюата концентрированнее в 1000 раз. Всего за 182 дня исследования из шлака выщелаченно: 0,0001н кислотой: 0,1407 мг свинца, 0,6147 мг меди и 0,016257 мг кадмия; 0,1н кислотой: 0,83666 мг свинца, 2,779 мг меди и 0,05974 мг кадмия. Масса подверженного выщелачиванию шлака составляет 267г, а общая масса отвалов составляет порядка 20млн. тонн, следовательно количество элементов мигрирующих из отвалов вследствие гидрогенного загрязнения составляет порядком несколько тонн. Результаты по общему выходу элементов представлены в табл.3.

Читайте также:  Все об абрикосах польза и вред

Вся масса выделившихся химических элементов из шлака в смоделированном процессе гидролиза, даёт нам представление о степени их воздействия на сопряжённые с отвалом системы. Общий выход металлов из отвальной массы, если взять за наиболее приближенную к реальным условиям обработку шлака серной кислотой концентрацией эквивалентной дождевой воде, за 182 дня составляет: 10,539 т свинца, 1,2818 т кадмия и 46,045 т меди.

Таблица – 3. Общий выход ТМ из отвалов

концентрация H2SO4масса шлака подверженного выщелачи-ванию, гвынос ТМ из шлака, мгобщая масса отвал-ов, млн. тобщий вынос ТМ из отвальной массы, т
 

Pb

 

Cd

 

Cu

 

Pb

 

Cd

 

Cu

0,1н2670,83660,05972,7792062,6714,47208,17
0,0001н2670,14070,016250,61472010,5391,2146,045

Можно резюмировать, что наблюдаемый выход потенциально опасных соединений из шлака, в созданной модели, вполне может соответствовать реальному загрязнению окружающей среды. Отсюда возникает необходимость в более детальном исследовании данной проблемы и выявлению возможных путей реабилитации.

Источник

Одним из наиболее опасных источников загрязнения природной среды являются техногенные минеральные образования (ТМО), формирующиеся в результате промышленной деятельности человека. Ежегодно мировая промышленность извлекает из недр Земли около 10 миллиардов тонн твердых веществ, 70% которых в последствии становятся отходами при производстве промышленной продукции. Расчёты показывают, что на территории России и стран СНГ запасы шлаковых отвалов достигают более 500 млн. тонн [1].

Наиболее остро проблема обращения с отходами производства проявляется именно в последнее время. Всё возрастающий интерес к ней в научной среде вызывается двумя основными факторами: в первую очередь усиливающимся дефицитом природных источников полезных для индустрии элементов, поэтому, ТМО представляют интерес как потенциальные источники природных ресурсов. Во вторую очередь, всё большее число учёных начинают обращать внимание на ТМО, как на комплексный источник загрязнения геосферы [2,3], следовательно, возникает необходимость в предотвращении загрязнения природной среды и во внедрении путей реабилитации.

Основная масса техногенных минеральных образований формируется в районах с развитой горноперерабатывающей и добывающей промышленностью. Одним из таких районов является город Карабаш Челябинской области, где в результате деятельности медеплавильного комбината ЗАО “КарабашМедь”, формируется огромное количество твёрдых отходов, складирующихся в отвалы металлургических шлаков. Общее количество медных шлаков составляет 20 млн. тонн. Шлаковые отвалы создают экологические проблемы, связанные с отчуждением земельных отводов, запыленностью, процессами естественного выщелачивания.

Целью данной работы является: моделирование процесса гидрогенного загрязнения окружающей среды от техногенных минеральных образований.

Для определения уровня загрязнения окружающей среды от металлургического шлака был смоделирован процесс гидролиза отвальной массы.

Воздух в районе исследования содержит в своём составе сернистый ангидрид (SO2) в концентрациях значительно превышающих фоновую, это связано с аэропромвыбросами Карабашского ГМК. Атмосферные осадки, проходя через толщу загрязнённого приземистого слоя атмосферы, взаимодействуют с SO2, в результате образуется серная кислота. В итоге на отвальную массу попадает дождевая вода с исходной концентрацией H2SO4 приблизительно равной – 0,0001н. Поэтому в качестве реагента для взаимодействия со шлаком использовалась серная кислота  концентрацией: 0,0001н. Масса подверженного выщелачиванию шлака составляет 267г.

Для моделирования процесса ускоренного гидролиза отвальной массы во времени, использовалась серная кислота в концентрациях превышающих исходную в: 10, 100, и 1000 раз. Это делалось, в первую очередь, для наиболее полного изучения миграции из шлака химических элементов, и во вторую очередь для сравнения полученных данных с результатами анализа элюатов представленных концентрацией H2SO4 эквивалентной дождевой воде.

Время взаимодействия серной кислоты со шлаком было определено в 14 дней, после чего брался элюат и шлак заливался вновь серной кислотой для снятия следующей пробы. Время в 14 дней было определено с учётом коэффициента фильтрации шлака, равному 3,3 м/сут.. Так как высота отвальной массы 32 м., то в течении 10 дней теоретически, кислота образовавшаяся на поверхности отвала, достигнет его основания, но с учётом наличия в отвальной массе различных литологических и геохимических барьеров, теоретическое время было увеличено до 14 суток. Итого было сделано по 13 промывок из 4 различных вариантов. Так же для выявления определяющей роли серной кислоты в процессе гидролиза шлака, было сделано 4 промывки отвальной массы дистиллированной водой, данные по анализу которых представлены в табл.1.

Таблица – 1. Содержание тяжелых металлов в элюате с дистиллированной водой, мг/л

CdCuPb
чистая H2O для отмывки0,0000670,0130,0041
1 промывка0,0191,00,014
2 промывка0,00960,370,011
3 промывка0,00830,310,00028
4 промывка0,001480,2290,000101
ПДКвр0,00110,03

Как видно, при действии на отвал дистиллированной водой, содержание тяжёлых металлов незначительно. Но, всё-таки, наблюдается некоторое превышение ПДК для водных объектов хозяйственно-питьевого и культурно-бытового водопользования (далее –  ПДК) по Cd и Pb. Вода слабо действует на силикатную матрицу, поэтому наличие ТМ в элюатах объясняется растворением веществ образующихся при выплавке металла. Выхода магния и железа при обработке отвальной массы дистиллированной водой не обнаружено, или же оно незначительно и выходит за границы определения. Следовательно, первичным фактором определяющим гидролиз отвальной массы, является серная кислота, содержащаяся в дождевой воде.

Результаты гидролиза шлака серной кислотой в различных концентрациях представлены в виде сводной таблицы, обобщающей выход исследуемых компонентов за всё время исследования (182 дня) и показывающий средний показатель значения pH (табл. 2).

Таблица – 2. Результаты химического анализа элюатов.

 

концентрация H2SO4

 

pH

Выход исследуемых компонентов из шлака, мг.
CaMgFePbCdCu
0,1н3,7530,266451,8898212,80,836660,059742,779
0,01н4,1148,29319,08317,8190,473120,0323374,715
0,001н4,664,261848,5870,40,123160,01895,245
0,0001н5,434,036923,81010,114070,0162570,615

На растворимость веществ, прямое влияние имеет значение энергии Гиббса (ΔG°f298.15). Численное значение ΔG показывает, как глубоко идет процесс растворения: чем отрицательнее ΔG, тем образуется более устойчивые соединения. Следовательно, можно связать энергию Гиббса и интенсивность выщелачивания элементов из шлака. Так, в процессе гидролиза отвальной массы наблюдается наибольший выход кальция (в 0,1н растворе 530,266 мг), значение ΔG°f298.15 для силиката кальция составляет: -1543,937 кДж/моль. Значение ΔG°f298.15 для силикатов магния, железа, меди, кадмия и свинца соответственно равны: -1462,098; -1117,546; -1112,245; -1106,253;       -1053,259 кДж/моль. Выход магния, железа, меди, кадмия и свинца соответственно обратно пропорционален увеличению энергии Гиббса: 451,889мг; 212,8мг; 2,779мг; 0,05974мг и 0,83666мг. Видно, что изложенная выше закономерность нарушается в отношении свинца и кадмия, это объясняется гораздо более большим содержанием свинца в шлаке, чем кадмия.

Читайте также:  Есть ли польза от велосипеда

Что бы более детально оценить возможный уровень воздействия техногенного образования на окружающую среду, был произведён расчёт общего выхода ТМ из шлака. Оценка производилась для элюата  представленного 0,0001н серной кислотой и элюата концентрированнее в 1000 раз. Всего за 182 дня исследования из шлака выщелаченно: 0,0001н кислотой: 0,1407 мг свинца, 0,6147 мг меди и 0,016257 мг кадмия; 0,1н кислотой: 0,83666 мг свинца, 2,779 мг меди и 0,05974 мг кадмия. Масса подверженного выщелачиванию шлака составляет 267г, а общая масса отвалов составляет порядка 20млн. тонн, следовательно количество элементов мигрирующих из отвалов вследствие гидрогенного загрязнения составляет порядком несколько тонн. Результаты по общему выходу элементов представлены в табл.3.

Вся масса выделившихся химических элементов из шлака в смоделированном процессе гидролиза, даёт нам представление о степени их воздействия на сопряжённые с отвалом системы. Общий выход металлов из отвальной массы, если взять за наиболее приближенную к реальным условиям обработку шлака серной кислотой концентрацией эквивалентной дождевой воде, за 182 дня составляет: 10,539 т свинца, 1,2818 т кадмия и 46,045 т меди.

Таблица – 3. Общий выход ТМ из отвалов

концентрация H2SO4масса шлака подверженного выщелачи-ванию, гвынос ТМ из шлака, мгобщая масса отвал-ов, млн. тобщий вынос ТМ из отвальной массы, т
 

Pb

 

Cd

 

Cu

 

Pb

 

Cd

 

Cu

0,1н2670,83660,05972,7792062,6714,47208,17
0,0001н2670,14070,016250,61472010,5391,2146,045

Можно резюмировать, что наблюдаемый выход потенциально опасных соединений из шлака, в созданной модели, вполне может соответствовать реальному загрязнению окружающей среды. Отсюда возникает необходимость в более детальном исследовании данной проблемы и выявлению возможных путей реабилитации.

Источник

Шлак металлургический – представляет собой легкоплавкие отходы силикатного типа, образующиеся при выплавке металлов из руд. Фактически, это многокомпонентный материал, содержащий окислы пустых пород, флюсов и топливную золу. Выход шлака на тонну материала определяется типом процесса и составляет до 80 кг в доменной печи, 30 – для мартена, 18 – при конверторном виде производства и 8 – ваграночном.

Долгое время эти вторичные продукты не представляли интереса человеку, в лучшем случае, используясь выборочно. Ситуация изменилась с середины прошлого века, когда отходы металлургических шлаков стали ценным вторичным продуктом, который используется в различных сферах трудовой деятельности человека: сельское хозяйство, сооружение зданий, дорожное строительство и прочие.

Смотрите похожие статьи:

  • Отходы обработки металлов при производстве готовых металлических изделий;
  • Что такое скрап — виды скрапа.

Разновидности шлакового продукта

Прежде чем классифицировать отходы металлургического производства, необходимо уточнить важную деталь. В металлургии образуется два типа побочных продуктов, это непосредственно шлаки и золошлаковые отходы. Последний вид вторичного ресурса представляет собой смесь шлака и золы, формирующуюся при сжигании угля и торфа. О ценности этой разновидности отходов поговорим позже, рассмотрев вначале различные типы самого шлака. Классификация шлаковых отходы достаточно глубоко структурировано, хотя основных групп существует только две. Это шлаки черной и цветной металлургии.

Виды шлака на фото:

Один из видов металлургического шлака

И это тоже относится к металлургическому шлаку

Еще один вид отходов металлургического производства

к содержанию ↑

Шлаковые отходы при выплавке чугуна и стали

Шлаки чугунной металлургии имеют следующую структуру классификации:

  1. Доменные. Категория связана с отходами, образующимися при выплавке чугуна, и включает несколько подгрупп. Это шлаки доменные различных видов чугуна: литейного, специального и предельного.
  2. Сталеплавильные. Сюда попадают шлаки, формирующиеся как в процессе выплавки стали, так и при обработке металла. Первая подгруппа объединяет электроплавильные, мартеновские и ваграночные шлаки. Во вторую попадают следующие виды отходов – тигельные и сварочные. Кроме того, отдельно различают шлаки, образующиеся при бессемеровании и томасировании чугуна.

Доменные шлаки металлургического производства образуются одновременно с чугуном при плавлении шихты, компонентами которой выступают: топливо, сама руда и флюс – обычно доломит или известняк. Менее плотный шлаковый состав отделяется от металла, всплывая над ним. Это позволяет легко отделить шлаковые отходы от чугуна. Вторичный продукт выпускается через верхнее, шлаковое отверстие, металл – посредством нижней, чугунной летки. Отходы, сливаемые через летку – верхний шлак, не содержат металлов и составляют от половины до трех четвертей всего количества побочных продуктов. Одновременно с этим, часть шлаковых масс остается внизу. Их выпускают после слива чугуна и направляют на переработку, суть которой выделить металлические включения из отходов.

Металлургическое производство – выплавка стали

Доменные шлаки металлургические отличаются вариативностью состава, определяемого типом компонент шихты: руды, флюса и топлива. В результат, на 95% шлаковые массы состоят  из окислов кальция, кремния и алюминия. Именно соотношение между основными и кислотными окисями формирует три вида шлаков. Продукты, с преобладанием окислов железа, марганцем, магния и кальция – относятся к основным шлакам, те, что содержат преимущественно SiO2 и Al2O3 – кислотным. Отходы, с равномерным присутствием обоих видов окислов – промежуточные шлаки.

к содержанию ↑

Стойкие и распадающиеся материалы

Еще один классифицирующий критерий – условия остывания пустой породы. Различие в процессе охлаждения приводит к формированию следующих разновидностей шлаков:

  • камневидные;
  • гранулированные;
  • стекловидные.

Следующий отличительный фактор, характеризующий шлаки металлургических комбинатов, – устойчивость. В этом отношении, альтернативу нераспадающемуся шлаку составляют такие виды распада:

  1. Силикатный. Характеризуется существенным приростом объема вещества, вследствие перехода кальциевого силиката из бета в гамма форму. Структура шлака покрывается трещинами и далее камень распадается в мучнистый порошок.
  2. Известковый. Процесс – следствие гидратации извести. Этот тип распада преимущественно характерен мартеновским шлакам, проявляясь как самопроизвольное растрескивание твердого материала на куски.
  3. Железистый. Связан с избыточным содержанием неокисленного железа относительно окислов этого металла. Пороговая величина составляет 1.5% от FeO. Превышение указанного значения и воздействие влаги, инициируют реакцию перехода сульфида железа в его гидроксид, сопровождающуюся выделением сероводорода. В результате объем шлака возрастает до 38%, что и приводит к растрескиванию.
  4. Марганцевый. Активируется при нахождении шлака во влажной среде.
Читайте также:  Проростки фасоли польза и вред

Переработка металлургических шлаков связано преимущественно с устойчивыми к распаду материалами. Их этого вторичного продукта изготавливается щебень, например.

к содержанию ↑

Утилизация шлаков

Современная ценность шлаковых пород достаточно высока, чтобы их попросту выбрасывать. Спросом пользуются даже отвальные доменные шлаки – образующиеся при сливе отходов в отвал и его последующей разработке. Такая разновидность вторичных материалов представляет собой кусковые породы с максимальными размерами до 120 мм. Утилизация отвального шлака достаточно условна. Куски необходимо выдержать определенное время на открытом воздухе, позволив природе совершить естественный отбор. Это позволит отсортировать пригодный для переработки материал от распадающихся шлаков или сернистых соединений.

Установка для переработки металургического шлака. На выходе щебень и металл. 1. Вибропитатель на опорной раме; 2. Агрегат сортировки; 3. Галтовочный барабан; 4. Агрегат крупного дробления; 5. Агрегат среднего дробления; 6. Агрегат сортировки; 7. Конвейера на базе (2 шт.); 8. Конвейер; 9. Конвейеры; 10. Конвейеры; 11. Конвейеры; 12. Конвейеры (3 шт.); 13. Железоотделитель на опоре (4 шт.); 14. Агрегат управления

Сфера реализации  отвального шлакового щебня – грунтовка под нижний слой бетонных покрытий, а также применение в дорожном строительстве.

Видео  – переработка и сортировка сталелитейного шлака

к содержанию ↑

Область использования и стандартизация

Согласно установленному стандарту под шлак металлургический – ГОСТ 3476-34, реализован свод требований к доменному материалу, отбираемому для приготовления цемента. Альтернативное использование отходов производства черных металлов – изготовление минеральной ваты. Источником сырья в этом случае выступает  щебень из металлургического шлака доменного, технические условия отбора которого прописаны в 18866-93. Пемза шлаковая – щебень пористый из металлургического шлака используется в качестве заполнителя бетонных смесей. Требования к этому материалу выделены в отдельный ГОСТ 9760-86.

Основной областью реализации металлургических отходов остается дорожное строительство. Именно под эту сферу изготавливается щебень пористый из металлургического шлака. При этом уровень пористости материала существенно влияет на его физико-механические свойства. Снижение параметра приводит к повышению прочностных характеристик. Для этих целей ранее использовалась процедура дегазации, позволявшая снизить пористость до 30%. Современные методики ориентированы на вакуумирования и центрифугирования шлака, что позволяет достичь цифры в 2%, фактически предлагая потребителю прочный недорогой щебень из отходов металлургии.

Щебень из отходов металлургии

Впрочем, в дорожном строительстве необходим щебень различной прочности, а соответственно пористости. Распределения в данном случае носит следующий характер. Под верхний слой дорожного полотна используются асфальтобетонные смеси на базе щебня пористостью 5 – 12%. Прокладка нижней части – основания автомагистрали допускает применение менее прочных материалов. В этом случае используется асфальт из шлакового щебня, пористостью 12 – 17%.

к содержанию ↑

Технология приготовления

Поскольку основная реализация металлургического шлака осуществляется посредством щебня, то приготовлению этого материала уделяется особое внимание. Лидером в разработке и усовершенствовании технологий производства щебня на отечественном рынке выступает Уральский НИИ Черной Металлургии.

Сам технологический процесс состоит из нескольких этапов:

  1. Слив жидких отходов послойно в шлаковые ямы. Толщина каждого уровня составляет от 20 до 30 см. Максимальное число слоев – 5.
  2. Полив шлаковой массы водой из расчета пол кубометра на тонну отхода.
  3. Кристаллизация состава в течение 4 – 8 часов.
  4. Разработка остывшей массы экскаватором.
  5. Сортировка шлака на фракции, с последующим дроблением при необходимости.

Производимый подобным технологическим процессом, шлаковый щебень, отличается отличными адгезийными характеристиками по отношению к различным строительным составам: битуму, дегтю, цементу.

к содержанию ↑

Образование и использование золошлаковых отходов

Рассмотрим подробно процесс на примере теплоэлектростанций, где сырьем выступает измельченный уголь, смешиваемый с мазутом. Выбор основан тем фактом, что основной источник, формирующий золошлаковые отходы – ТЭЦ. Процесс горения сопровождается отделением микрочастиц золы, который уносятся тягой вместе с дымом. При этом, дым и пар образуются органикой, тогда как минеральные компоненты сгорающего топлива оседают в шлак и золу. Не улетевший, тяжелый зольный остаток, оседает на подтопки, сплавляясь между собой, что приводит к формирования отдельных кусков. Далее зола перемешивается со шлаком, образуя золошлаковые отходы, которые транспортируются на хранение в специальные отвалы. При этом, золошлаки сортируются отдельно от недожога – частиц несгоревшего угля.

Отходы тэц – золошлаковые отходы

Переработка золошлаковых отходов практически аналогична использованию самих шлаков. Сфера их реализации включает изготовление:

  • различных видов бетона – тяжелого, ячеистого и силикатного;
  • строительных составов;
  • цементного клинкера;
  • керамзита;
  • керамического кирпича.

Также золошлаковые отходы применяются при прокладке земляного полотна автомагистралей, изоляционного материала на полигонах ТБО.

Видео – о проблемах накопления и утилизации золошлаковых отходов:

к содержанию ↑

Стоимость отходов

Существует два способа определить расценки на вторичный продукт металлургического производства. Первый вариант прямое обращение к государственным сметным нормативам, в частности ТСЦ – территориальный сборник цен. К сожалению, данная нормативная база обновляется нерегулярно и под шлак металлургический, цена может не соответствовать актуальной стоимости.

Второй подход – ввод в поисковую систему фразы куплю шлак металлургический. Варианты ответа доступны по разным регионам РФ. Стоимость шлака металлургического указываются с учетом фракции (более мелкие куски обходятся дороже в среднем на 300 рублей за тонну).Так, актуальные расценки металлургических шлаков фракции 20-40 начинаются с 1300 рублей за тону, цена для размеров 40-70 – 1000.

Источник